
1

Deep Reinforcement Learning Based Flexible

Preamble Allocation for RAN Slicing in 5G

Networks

Ahmet Melih Gedikli∗†, Mehmet Koseoglu∗, Sevil Sen∗

∗WISE Lab of Hacettepe University; †Corresponding Author

Abstract

One of the most difficult challenges in radio access network slicing occurs in the connection

establishment phase where multiple devices use a common random access channel in order to gain access

to the network. It is now very well known that random access channel congestion is a serious issue in

case of sporadic arrival of machine-to-machine nodes and may result in a significant delay for all nodes.

Hence, random access channel resources are also needed to be allocated to different services to enable

random access network slicing. In the random access channel procedure, the nodes transmit a selected

preamble from a predefined set of preambles. If multiple nodes transmit the same preamble at the same

random access channel opportunity, a collision occurs at the eNodeB. To isolate the one service class

from others during this phase, one approach is to allocate different preamble subsets to different service

classes. This research proposes an adaptive preamble subset allocation method using deep reinforcement

learning. The proposed method can distribute preambles to different service classes according to their

priority providing virtual isolation for service classes. The results indicate that the proposed mechanism

can quickly adapt the preamble allocation according to the changing traffic demands of service classes.

Index Terms

Deep Reinforcement Learning, Preamble Allocation, Network Slicing, 5G, RAN, M2M

September 2021 DRAFT



2

I. INTRODUCTION

Internet of Things (IoT) is becoming more widespread in a wide range of usage areas such as

smart grids, personal communications, controlling traffic flow on roads, smart driving, and smart

healthcare [1]. It was recently reported that a total of 75 billion IoT devices are expected to be

in operation globally by 2025 [2]. Communication among these IoT devices is named machine-

to-machine (M2M) communication and the connections resulting from M2M communication are

expected to be more than half of the global connected devices and connections by 2022 [3].

Hence, M2M communication is one of the main drivers of the evolution from 4G to 5G. While

nearly half of these connections have resulted from home applications, the number of connections

resulting from connected work and connected cities applications is showing an increasing trend

in recent years.

M2M communication is the main driver of fully-automated production lines and connected

cities. It has different characteristics than human-to-human communication (H2H) who has been

the main driver of Long-Term Evolution (LTE). In H2H, most of the traffic is carried on the

downlink, sessions are longer and less frequent. On the other hand, M2M devices mostly utilize

the uplink and sessions are shorter and more frequent. For example, a smart meter may wake

up, send its data, and then immediately go back to sleep, thus, just for a short data transmission,

an uplink physical resource allocation request has to be made. In short, these devices generally

require low bandwidth, however, due to the large number of them and their wake-up nature, the

up-link physical resource allocation for them are quite different from H2H [4].

5G has not only pledged to provide services for H2H and M2M communication but it promised

more, yet, up-to LTE it was sufficient. Therefore, LTE and 3G generally divided the service

characteristics into two as M2M and H2H. However, with the 5G concept at least 3 but up to

5 different service characteristics are defined [5], [6]. The priorities of these service types may

differ from each other. For example, while a remote surgery service should have the highest

DRAFT September 2021



3

priority since it must be ultra reliable and must provide ultra low latency [7], an IoT service

that collects sensor data can have the lowest priority in a network. Thus, the increasing number

of devices and services with changing characteristics cause us to review the bottlenecks of the

communication.

One of the bottlenecks in Radio Access Network (RAN) communication is the Physical

Random Access Channel (PRACH) allocation procedure [8]. This RACH opportunity period

is called Random Access Opportunity (RAO) and the whole procedure is maintained by base

stations. The limited number of orthogonal distinguishable signals (preambles) arise the need

of dynamic distribution of them to the services. In both LTE and 5G, there are 54 PRACH

preambles each one selected by devices randomly and transmitted for channel allocation requests.

If multiple nodes transmit the same preamble at the same RAO, a collision occurs at the base

station. To isolate one service class from others during this phase, one approach is to divide

RACH resources to different service classes. Static allocation of those resources, however, may

result in inefficiencies when the traffic generated by each service changes significantly over time.

For example, in the event of a power outage and restore, all IoT devices in the network may

try to reconnect to the network at the same time since they wake up at the same time. There

may also be temporary dense networks, such as networks of thousands of spectators gathered in

a stadium for a football match [9], [10]. Moreover, since 5G requires more heterogeneous and

smaller cells, the number of users in each cell could vary greatly and dynamically due to user

mobility [11]. All these example scenarios highlight the need for dynamic allocation mechanism

for up-link resources, since the contention on resources may cause delays and collisions. Hence,

slicing the resource into dynamic groups is more suitable to be able to keep the delay and

collision probabilities around the desired levels.

Dynamic slicing of resources of the RACH preambles is a challenging problem since the

eNodeB has limited information about the number of nodes waiting for different services.

Previous studies on service differentiation in the RACH context either focused on heuristics

September 2021 DRAFT



4

methods or analytical models. This research focuses on a reinforcement learning (RL) approach

for this complex and dynamic problem. RL methods have the advantage of being able to operate

without exact system models. RL-based approaches have become very attractive for solving

problems in networking and communication due to their very characteristics such as autonomous

decision making and obtaining the best policy with the minimum information for network entities

[12]. Moreover, it is stated in the literature [13] that DRL-based network resource allocation

schemes outperform conventional resource allocation schemes. Also, they have the ability to

adapt to changes in an environment and to give a suitable action automatically with the help of

their reward mechanism [14]. Furthermore, where a large amount of data may not be available

to train complex deep learning models, RL might provide a practical solution by learning from

a network environment [15]. These features make RL very attractive for dynamic preamble

allocation and suitable for changing service requirements over time. Therefore, in this study, the

use of reinforcement learning for automatically RAN slicing is investigated.

An adaptive preamble subset allocation method is proposed in this research using deep

reinforcement learning (DRL) in order to increase QoS by preserving the balance between

service types such that the PRACH could be shared with respect to priorities of services and

traffic in the network. The proposed method can distribute preambles to different service classes

according to their priority providing virtual isolation of service classes. The results indicate that

the proposed mechanism can adapt the preamble allocation according to the changing traffic

demands of service classes quickly. Besides, several reward functions are proposed for the RL

algorithm and mathematically analyze the behavior of these functions. Simulations indicate that

the behavior of the proposed RL mechanism closely follows the proposed mathematical analyses.

The contribution of this current study could be summarized as follows:

• DRL is proposed in order to solve the preamble allocation problem in 5G. To the best of our

knowledge, this is the first study in the literature that explores the use of DRL for allocating

preambles dynamically based on the priorities of services, and traffic in the network.

DRAFT September 2021



5

• The proposed method is evaluated thoroughly on varying simulated networks where traffic

could increase or decrease suddenly or constantly. Since at least three services are defined

in 5G and this number could increase up to 5 services [6], network scenarios with 2, 3, 5

slices are considered in the experiments. Please note that, evaluations are generally carried

out for 2 or 3 slices in the literature, however 5 slices are also taken into account here.

• The experimental results show that the proposed approach successfully allocates preambles

dynamically and improves the access probability of slices to the PRACH based on their

priority levels. Moreover, it can adapt very quickly to changes in the network. The proposed

approach is compared with a recent approach [16] in the literature and shown to produce

results comparable to [16].

• Three reward functions, namely Successful Preambles Reward Function (SRF), Proportional

Reward Function (PRF) and Collision Penalizing Reward (CRF) are proposed for the

reinforcement learning and mathematically analyzed. CRF has been shown to be the most

successful, since it penalizes collisions.

The rest of the paper is organized in the following manner. In Section 2, related work is

introduced. The system model is given in Section 3. In Section 4, RL-based preamble grouping

is explained. The analysis of the proposed 3 reward functions of RL is carried out in Section 5.

The evaluation and results are discussed in Section 6. The discussion on results, limitations and

possible future work is given in Section 7. Finally, Section 8 is devoted to concluding remarks.

II. RELATED WORK

In this section, studies on RACH congestion control, reinforcement learning in wireless

networks and RAN slicing in the literature are reviewed.

The most well known proposed congestion control technique, Access Class Barring (ACB),

prevents user equipment (UE) to access RACH resources when there is congestion in the network.

The eNodeB periodically distributes a probability factor and barring time. Then, the UEs select

September 2021 DRAFT



6

a random number. If the selected random number is lower than the probability factor, the UE is

permitted to access RACH resources. Otherwise, UE waits a random amount of time based on

the barring time distributed by the eNodeB.

Since ACB does not consider multiple service classes, Extended Access Barring (EAB) is

proposed as an extension of ACB for service differentiation among different M2M devices.

In this scheme, the main aim is to reduce the number of collisions among delay-tolerant M2M

devices, so generally, the delay is higher than ACB [17]. There are also few studies to incorporate

service differentiation into random access channel by distributing multiple barring factors to

different service classes in combination with different techniques [18], [19], [20]. While the

study in [18] bases their strategy on three (low, medium and high) ACB factors and names it

multiple ACB (MACB), the authors in [19] proposes a method for delay-sensitive devices by

combining ACB and RACH partitioning. Moreover, they assert the work in [18] does not realize

partition of RACH and it ignores the quality of delay-tolerant devices. Another multiple ACB

method [20] introduces a priority-based access class barring (PACB) algorithm that performs

higher throughput when compared to MACB and some other relevant techniques.

There are also a limited number of studies proposing to prioritize RACH access through

preamble separation [21], [22], [23], [24]. Most of these studies propose a fixed preamble

separation configuration which divides the preambles into two groups. For example, the total set

of preambles are divided into two groups in [21], [23], one group is exclusively reserved for H2H

devices and the other group is either reserved for M2M or can be used by both M2M and H2H

devices. The authors in [24] proposed to partition the preambles into 3 groups by introducing a

higher priority traffic type for the smart grid. However, the groupings are not adaptive. Another

static approach where PRACH slots are assigned to different service classes is also proposed

in [22]. The issue with these works is that the preamble groupings are static which may be

inadequate to respond to changes in the traffic of different service classes.

There are few studies that investigate the use of dynamic preamble subset allocation in the

DRAFT September 2021



7

literature [6][25][16]. The main difference between the approach in [6] and this research is

that the authors use heuristic algorithms for subset allocation whereas reinforcement learning is

used in this research. Besides they consider a setup where nodes transmit multiple consecutive

preambles whereas this research considers single preamble transmission as in the LTE standard.

Another dynamic preamble separation method which is combined with binary exponential back-

off with respect to three different priority classes is proposed in [26]. A load adaptive dynamic

preamble allocation method called LATMAPA [25] is proposed for prioritizing in the context of

5G Random Access. However, it proposes a solution for only 2 slices which are delay tolerant

and delay intolerant.

Very recently, an online control method for dynamic preamble distribution over prioritized

preamble groups is proposed in [16]. At first, the number of active devices in each priority is

estimated in a recursive Bayesian way. Then, together with this estimation, a heuristic novel

algorithm that distributes the preambles over the service groups with respect to their priority

levels in a dynamic manner is applied. Finally, they extend their approach with ACB. In terms

of separating the preambles and prioritizing the services, [16] shows similarity to the proposed

approach in this current study. For example, while they classify the devices into different priorities

by assigning priority weights, priority coefficients are employed in this study. Furthermore, both

studies support any number of services. Therefore, the approach in this current study is compared

with mentioned approach by using a scenario given in [16]. Moreover, the ideal algorithm given

as the baseline in [16] is used in the experiments.

RL-based approaches have recently been proposed for several problems in radio access net-

works. In general, these works are focused on optimizing the allocation of resources and in-

creasing the quality of service (QoS). One relevant study on RACH proposes ACB barring rate

adaptation using Q-learning to increase the success probability of M2M communications with low

impact on H2H communication [27]. Another study employs RL to optimize the joint allocation

of fiber and radio resources for Cloud RANs. The authors note that RL improves performance

September 2021 DRAFT



8

with respect to genetic and tabu search algorithms [28]. There are also several studies about

mobile edge computing (MEC) to optimize the allocation of network and computing resources

[29], [30], [31]. The study in [29] proposes a DRL solution to allocate the networking resources

adaptively to reduce service time for users under the diversified MEC environment. The authors

in [30] exploit Deep Q-Network (DQN) in order to solve computational offloading problem in

multi-user MEC systems and to avoid the curse of dimensionality. A similar work [31] focuses

vehicle-assisted computational offloading using DQN in a similar manner. Another application

of RL is to improve the energy efficiency of heterogeneous networks through user scheduling

and resource allocation [32].

A DRL-based random access optimization method is proposed in [33] in order to dynamically

adjust the ACB parameter. The prioritization is addressed using different ACB parameters for

service types, however, only three types are sampled. Furthermore, the types are assumed to have

default traffic characteristics. Hence, the diversity of service types and flexible characteristics

of traffic are not addressed in [33]. To the best of our knowledge, RL has not been applied

to the problem of preamble subset allocation for network slicing. The advantage of using RL

with respect to approaches based on heuristic methods is that there is no assumption on the

traffic model in RL. RL can learn to maximize channel performance regardless of the traffic

distribution.

Network slicing is also gaining popularity as a key enabler technology for the 5G vision and

RAN slicing is one of its main components. The main aim of RAN slicing is to enable dynamic

on-demand allocation of radio resources among multiple services. A run time slicing method

that isolates RAN slices and a set of algorithms in order to partition inter-slice resources are pro-

posed in [34]. Another RAN slicing method allocates radio resources between enhanced mobile

broadband and vehicle-to-everything services using RL combined with a heuristic algorithm to

maximize utilization [35]. A two-layer scheduler approach is proposed in [36] in order to manage

balance between isolation and efficiency, where the first layer is used to allocate resources to

DRAFT September 2021



9

each slice and the second one is used to allocate resources for each user. Another RL-based slice

admission controller which makes its decisions based on resource availability is also proposed

in [37].

III. SYSTEM MODEL

In a typical LTE configuration, 64 preambles are used in the random access procedure. While

10 preambles are reserved for contention-free access, 54 preambles are allocated for contention-

based access [38]. Hence, it is assumed that the total number of available preambles is 54 and it

is assumed that a system where there are N slices with different service requirements. Therefore,

54 preambles used in the random access procedure are divided into N different groups. Each

preamble group is assigned to a slice and a UE is only allowed to select a preamble from the

group of its service class. Hence, each slice is isolated from the rest of the slices in the sense

that the preamble transmitted by a UE can only collide with the other UEs in the same slice.

There are studies in the literature that aim to model and analyze the PRACH considering the

factors like path loss, low transmission power of nodes, deafness of nodes [39], [40], [41]. In

this research, these factors are ignored and the system is assumed to have an ideal channel where

preambles losses only occur due to collisions.

In the model, in each RAO, the nodes which have been collided will remain backlogged in the

system and will attempt to transmit a new preamble in the next round. The preamble groupings

are adaptive and it is assumed that these groupings are announced by the eNodeB before each

RAO. Hence, the backlogged nodes will respect the new preamble groupings announced by the

eNodeB in the next round. As well as the backlogged nodes, newly arriving nodes will also be

attempting to transmit in the next slot.

The notations used throughout this study and how they are calculated are listed in Table I.

Here, M represents the total available contention based PRACH orthogonal distinguishable signal

(preamble) count in each RAO period (54). N shows the number of slices in the network. W is

September 2021 DRAFT



10

the maximum number of allowed preamble transmission attempts, if it is reached, the preamble

requests are removed from the backlog and evaluated as dropped. mj represents the number of

preambles reserved for slice j and it is announced by eNodeB periodically. At the end of each

RAO period, the contention on the PRACH is resolved, and the number of collided preambles for

slice j (cj), number of successful preambles for slice j (sj) and number of unused preambles for

slice j (uj) are obtained in that period. These values with priority coefficients (kj) are used in the

reward functions, hence the reward value for slice j (rj) could be calculated. nj here represents

the number new arrival preamble requests for slice j. nj values are determined for each scenario

in testing and these requests are added to the testing backlogs (btj) in every RAO period (10ms).

On the other hand, nj values are randomly generated in training and, the requests are added

to the training backlogs (btrj ). Finally, λj , which is widely used in the literature, represents the

normalized arrival rate for slice j.

A sample RAO is shown in Fig. 1. In the figure, the eNodeB has announced that 9 preambles

are reserved for slice-1, 12 preambles are reserved for slice-2, etc. There were 22 UEs transmitted

a preamble from slice-1 and four of them became successful as they are the ones that did not

experience a preamble collision. Hence, the number of backlogged UEs is reduced to 18 after

the RAO. Slicing the preamble resources to services given in Fig. 1 as an example can be called

as preamble grouping.

IV. REINFORCEMENT LEARNING BASED PREAMBLE GROUPING

In recent years, there has been a tremendous increase in the use of deep reinforcement learning

in order to solve highly-complex problems. Here, it is used for the adaptive selection of the

preamble groups. In the following parts, the proposed RL-based preamble grouping technique is

explained in detail. Firstly, the focused problem in this research is formulated in the RL context

and, then, the RL algorithm that is used to solve the problem at hand is described. Further, the

training procedure used in the system model is clarified.

DRAFT September 2021



11

Fig. 1: RACH Process of eNodeB Simulator

Notation Explanation Value Formula

M Total number of available preambles for contention-based RACH 54 -

N Number of slices in the available system model - -

W Maximum number of allowed preamble transmission attempt 10 -

mj Number of preambles reserved to slice j for the RAO - -

cj Number of collided preambles in the RAO period for slice j - -

sj Number of successful preambles in the RAO period for slice j - -

uj Number of unused preambles in the RAO period for slice j - mj − cj − sj

nj Number of new arrival preamble requests in the RAO period for slice j - -

btrj Number of backlogged preamble requests waiting for the next RAO period for slice j used in the training - -

btj Number of backlogged preamble requests waiting for the next RAO period for slice j used in the testing - -

bj Number of backlogged nodes waiting for the next RAO period for slice j - -

λj Normalized arrival rate for slice j - λj = nj/M

kj Reward or priority coefficient for successful transmission of a preamble request for slice j j -

rj Collected reward value in a RAO period for slice j -
sjkj − cj for CRF
kj

sj
mj−uj

for PRF

TABLE I: Notations

September 2021 DRAFT



12

A. Problem Representation

In the RL context, the agent takes actions according to its policy to interact with the envi-

ronment. The policy is a function that maps the environment’s state into agent’s actions. As a

result of the actions, the environment returns a reward and the state of the environment changes.

Observing this new state, the agent chooses a new action and the interaction goes on. During

this interaction, the agent refines its policy based on the collected rewards to reach an optimal

policy that maximizes the expected cumulative reward.

In this problem, the learning agent is the eNodeB and the action in RL corresponds to the

preamble groupings for each slice. More specifically, the eNodeB decides on the number of

preambles for each slice such that their sum will be 54. Before each random access opportunity,

the groupings is distributed in System Information Grouping (SIB) along with other RACH

parameters. The grouping information includes slice id, the number of preambles reserved for

this slice and the first preamble index of the group. The environment is the random access

channel where a number of UEs are waiting to transmit a preamble. Based on the announced

preamble groupings, each UE transmits one of the preambles from their respective preamble

group. Each node randomly selects its preamble and the number of UEs transmitting is not

known to the eNodeB. Moreover, the number of UEs waiting to transmit a preamble changes as

new UEs arrive at the channel over time. Hence, the environment is stochastic.

B. Training

Fig. 2 illustrates the interaction between the agent and the simulation environment. There are

two neural networks in policy optimization based DRL. The policy network plays the actor role

and produces the action space to the environment. Meanwhile, the value network produces state

values by assigning each state a score calculated using the sum of rewards and the state of the

previous round so that the states with higher rewards have more value in the network. Actions

which results in a better state is preferred since it produces a higher reward.

DRAFT September 2021



13

Here, a scenario where the eNodeB policy is trained offline but tested with actual traffic after

deployment is assumed. RL algorithms start by exploring the action space. At the initial state, the

first actions are mostly random. Moreover, their initial behavior may be very far from optimum.

Hence, RL algorithms take a considerable amount of time in order to converge, especially if the

training process starts from scratch.

The most crucial aspect in the RL framework is the reward function. The reward function

defines the objective of the problem. In this study, the reward is defined as a function of the

number of successful preambles and collided preambles for each service class. For each service

class j, a reward function is calculated as follows:

Rj(t) = sjkj − cj (1)

where sj and cj are the number of successful and collided preambles from class j, respectively.

kj is defined as the reward or priority coefficient for class j which is used to prioritize among

different slices. Higher the priority of a slice, the higher its reward coefficient should be. Then,

the total reward is calculated as the sum of rewards for all service classes.

R(t) =
∑
j

Rj(t). (2)

The selection of this reward function is discussed in detail in Sec. V.

The state of the environment is the number of UEs from each service class waiting to transmit

a preamble. However, this information is not available to the eNodeB, hence, it uses the most

recent observation about the channel in terms of successful and collided preambles. The state is

defined as

S(t) =
⋃
j

Sj(t) (3)

where

Sj(t) = {cj, sj}. (4)

September 2021 DRAFT



14

The policy of the agent maps the state to actions and the RL algorithm optimizes the policy.

Here, trust region policy optimization (TRPO) which has recently achieved state-of-the-art results

in various AI tasks is employed in RL [42]. In the TRPO algorithm, the two dependent neural

networks shown in Fig. 2 are for approximating the value function and the policy function. From

the TRPO perspective, the value network is used to calculate the expected future reward from the

current policy. The policy network is used for approximating the policy function. This network

gets the current state of the environment as input and produces the probability distributions of

each action using the value function. Then, the algorithm selects the most probable action [43].

In this study, an open implementation of TRPO [44] is used. This framework uses ADAM

optimizer for both neural networks due to its fast convergence [45], [46]. The default values

of the framework [44] is used in the experiments. Only the number of episodes and batch size

parameters are modified in these settings. Batch size is set to 1 in order to increase the frequency

of policy evaluation and the number of episodes is set to 100,000 in order to increase the training

time. The simulation parameters and their values used in the experiments are given in Table II.

The details of other parameters used in the framework can be found in [44].

Over-fitting is a crucial problem to avoid in all types of machine learning approaches. RL

algorithms are also prone to over-fitting to the environment and the trained policies may not

generalize very well to newer environments. In the scenario it is considered that the system

could over-fit to the traffic arrival distributions used in training. In order to avoid over-fitting,

the policy is trained by using a randomly generated traffic model. In the model, the generator

redistributes the number of preamble requests randomly in 5 seconds periods. Recalling M is

the total number of available preamble requests, it is shown in [47] that the number of successful

transmissions in a round yields to M/e if the number of arrival of preamble requests is equal to

M in a round. In the next round, the number of backlogged request is M−M/e if no new request

is made. As a result, if the arrival request count is greater than M/e constantly, the number of

backlogged preamble request increases in time and the RACH becomes unstable irreversibly.

DRAFT September 2021



15

Fig. 2: Interaction Between DRL Agent and Network Environment

5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

18

20

22

24

n
1
=7, n

2
=8

n
1
=6, n

2
=6

n
1
=5, n

2
=4

(a)

5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

n
1
=5, n

2
=4

n
1
=6, n

2
=6

n
1
=7, n

2
=8

(b)

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

n
1
=7, n

2
=8

n
1
=6, n

2
=6

n
1
=5, n

2
=4

(c)

Fig. 3: Change in the (a) SRF (b) PRF (c) CRF as m1 changes for k1 = 1 and k2 = 2 for

different arrival rates.

Therefore, the number of preamble requests are distributed to slices in a way that their average

sum yields M/e in the long run. Since this given randomly generated traffic does not show any

patterns as might be in a real traffic, it is less prone to over-fitting. Therefore, it is preferred to

be used in training. Then the generated model is evaluated in testing. The performance of the

model in varying network scenarios also supports that the model does not over-fit.

September 2021 DRAFT



16

Networks Scenarios
2-slice 3-slice 5-slice

Parameters Value Value Value
N 2 3 5

kj k1 = 1
k2 = 2

k1 = 1
k2 = 2
k3 = 3

k1 = 1
k2 = 2
k3 = 3
k4 = 4
k5 = 5

Reward Functions CRF
PRF

CRF
PRF CRF

Discount Factor 0.9

Number of Episodes 100,000

Batch Size 1

GAE (λ) 0.98

DKL target 0.003

Size of the First Hidden Layer 10

Initial Policy Log-variance -1

TABLE II: Simulation Parameters

V. REWARD FUNCTION ANALYSIS

Reward function is the objective function used for evaluating the model that has to be

maximized over successive steps. The choice of the reward function is crucial, since a poor

selection may result in sub-optimal allocation of resources. In this part, analytical expressions

are derived for several possible reward functions for a two-slice scenario. Then, the behavior of

these functions is evaluated. Finally, these analytical results are compared with the experimental

results presented in Sec. VI.

Let m1 and m2 are the number of preambles assigned to each slice such that M = m1 +m2.

Let n1 and n2 are the average number of arrivals per RAO for each slice. First, consider the case

where n1 < m1/e and n2 < m2/e. In this case, all incoming traffic can be supported because

the capacity of the RACH with m preambles is approximated as m/e [48].

DRAFT September 2021



17

When there are bj nodes randomly selecting preambles from a set with size mj , the expected

number of successful preambles is given by [49]:

sj = bj(1−m−1
j )bj−1. (5)

Similarly, the expected number of unused preambles can be found as [49]:

uj = mj(1−m−1
j )bj . (6)

The remaining preambles are collided:

cj = mj − sj − uj. (7)

When the RACH is stable, the expected number of successful preambles must be equal to the

average number of arrivals in the long run, i.e., sj = nj . To satisfy this equality, the number

of attempting nodes at each slot needs to increase to a level bj > nj . This value can be found

by solving (5) which gives bj = −mjW (−nj/mj) where W () is the principal branch of the

Lambert W function [48]. Using the approximation (1− 1/x)n ≈ e−n/x, u and c can be further

simplified as

uj ≈ mje
−bj/mj = mje

W (−nj/mj) (8)

and

cj ≈ mj(1− eW (−nj/mj))− nj. (9)

A. Successful preambles reward function (SRF)

The most intuitive and simple reward function is the number of successfully transmitted

preambles at each RAO. In this case, the reward for a slice is rj = sj and the total reward

can be defined as the weighted sum of rewards of each slice:

rsucc = k1r1 + k2r2 = k1s1 + k2s2 (10)

where k1 and k2 are used to prioritize different slices. This reward function, however, has some

undesirable properties. For any choice of m1 and m2 which satisfies n1 < m1/e and n2 < m2/e,

September 2021 DRAFT



18

RACH is stable and the number of successful preambles equal to the number of arrivals, sj = nj .

Hence, the reward function is flat in this region. For n1 > m1/e and n2 < m2/e, all preambles

will be unsuccessful for slice-1 and all traffic can be supported in slice-2, again leading to a flat

reward function. In general, the reward function can be written as:

rsucc =



k1n1 + k2n2 if n1 < m1/e, n2 < m2/e

k1n1 if n1 < m1/e, n2 > m2/e

k2n2 if n1 > m1/e, n2 < m2/e

0 if n1 > m1/e, n2 > m2/e

(11)

The behavior of this reward function is illustrated in Fig. 3a for n1 = n2 = 5. As the reward

function is flat for the stable region, the RL agent does not have any incentive to change the

groupings as long as the RACH is stable. This behaviour may bring the system very close

to instability when the number of preambles reserved for one slice is barely sufficient for the

traffic of that slice. In that case, a slight increase in traffic may result in serious congestion

which could have been easily avoided if the agent used a more robust allocation of preambles.

Hence, a reward function is needed which would “steer” the system towards a better operating

point.

B. Proportional reward function (PRF)

Another intuitive reward function for the RACH channel is the ratio of successful preambles

among the number of transmitted preambles. Weighting each ratio corresponding to each slice,

it is possible to differentiate preambles among slices according to their priority. Let k1 and k2

denote the priority coefficients of each slice. Then, for n1 < m1/e and n2 < m2/e, total reward

for a single RAO is given by

rpr = r1 + r2 = k1
s1

m1 − u1

+ k2
s2

m2 − u2

(12)

DRAFT September 2021



19

For n1 > m1/e, there are not enough preambles for slice-1 which will result in a growing

backlog and all preambles will collide resulting in r1 = 0. Similarly, for n2 > m2/e, r2 = 0.

Hence,

rpr =



∑2
j=1

kjnj

mj(1−eW (−nj/mj))
if n1 < m1/e, n2 < m2/e

k1n1

m1(1−eW (−n1/m1))
if n1 < m1/e, n2 > m2/e

k2n2

m2(1−eW (−n2/m2))
if n1 > m1/e, n2 < m2/e

0 if n1 > m1/e, n2 > m2/e

(13)

For a given n1, n2, k1 and k2, this function can be numerically maximized to find the values of

m1 and m2 such that m1+m2 = m. The behavior of the PRF is shown in Fig. 3b for n1 = n2 = 5.

This reward function does not suffer from the problem mentioned in the previous part. The

optimum values of m1 for different priority coefficients is 25, 24 and 23 for (n1, n2) = (5, 4),

(6, 6) and (7, 8), respectively. Even the traffic of low-priority is higher than the traffic of high-

priority, this reward function allocates a lower number of preambles to the lower-priority traffic.

C. Collision-penalizing reward function (CRF)

Another proposed reward function is defined as rj = sjkj − cj where kj is the reward

coefficient. Hence, the total reward for n1 < m1/e and n2 < m2/e can be written as:

rcp =r1 + r2 (14)

=k1s1 + k2s2 − c1 − c2 (15)

=(1 + k1)n1 −m1(1− eW (−n1/m1))+ (16)

(1 + k2)n2 −m2(1− eW (−n2/m2)) (17)

For n1 > m1/e and n2 < m1/e, all preambles reserved for slice-1 will experience collisions,

September 2021 DRAFT



20

c1 = m1 and s1 = 0. Hence, the reward will be

rcp =k2s2 −m1 − c2 (18)

=(1 + k2)n2 −m1− (19)

m2(1− eW (−n2/m2)). (20)

Similarly, for n2 < m2/e:

rcp =k1s1 −m2 − c1 (21)

=(1 + k1)n1 −m2− (22)

m1(1− eW (−n1/m1)) (23)

For the case n1 > m1/e and n2 > m1/e, all preambles will be collided:

rcp = −m1 −m2. (24)

The behavior of the CRF is shown in Fig. 3c. For k1 = 1 and k2 = 2, the optimum values

of m1 for different priority coefficients is 30, 27 and 25 for (n1, n2) = (5, 4), (6, 6) and (7, 8),

respectively.

VI. EVALUATION AND RESULTS

In this section, the proposed technique is evaluated using simulations. Different models are

trained for each reward function for different number of slices and evaluated. The models are

trained by using only CRF and PRF reward functions. When SRF is used as the reward function,

the agent cannot distribute preambles successfully and cannot handle the load of the higher

priority slices effectively. As a result, a higher number of dropped preamble requests and longer

waiting times are observed in comparison to CRF and PRF. Therefore, only the results of the

models trained by using CRF and PRF are demonstrated in the results.

In the previous section, 3 different reward functions are analyzed for the 2-slice scenario since

the complete state space is relatively small. However, with the context of 5G there are defined at

DRAFT September 2021



21

least 3 service types: extreme mobile broadBand (xMBB), massive machine-type communications

(mMTC) and ultra-reliable machine-type communications (uMTC) [5]. This number, however,

can increase up to 5 as delay-tolerant IoT, emergency, high priority IoT, human-to-human and

mobile broadband [6]. On the other hand, increasing the number of slices also increases the

state space drastically and finding the optimum policy through analysis gets intractable. Here,

the simulations are also conducted for 3 and 5-slice scenarios besides the 2-slice scenario.

In the simulations, slices are prioritized using their reward coefficients, kj . Slice numbers are

used as the prioritization factor such that kj = j. In other words, assuming there are N slices,

the N th slice has the highest priority. This prioritization scheme is employed in all simulations

through this paper. Therefore, the slice numbers in all figures also indicate their priority. In

addition, the first and lowest priority slice will be named as low-priority slice and the N th and

highest priority slice will be named as high-priority slice in the rest of the paper. The Figs. 4-8

are plotted using the average of collected data of 10 simulation runs.

A. Traffic Distribution

In the simulations, nj preamble requests are generated every 10 ms and these requests are

added to the message backlogs of each slice. While lower priority slices have a constant arrival

rate during the whole simulation, the rate of the high-priority slice is increased every 200 ms. In

the 2-slice case, low-priority slice has a constant normalized arrival rate of λ1 ≈ 0.09 where the

normalized arrival rate of slice j is defined as λj = nj/M . The normalized arrival rate for the

high-priority slice starts from λ2 ≈ 0.04 and increases up to λ2 ≈ 0.39. In the 3-slice case, the

low-priority slice has a constant rate of λ1 ≈ 0.07 and medium-priority slice also has a constant

rate of λ2 ≈ 0.09. The normalized arrival rate of the high-priority slice starts from λ3 ≈ 0.04

and increases up to λ3 ≈ 0.39. The x-axis of the Figs. 4, 5, 6, 7 and 8 demonstrate this increase.

Since the rate of increase of the high-priority slice is constant, the x-axis is proportional to the

simulation time. Each simulation runs 7 seconds.

September 2021 DRAFT



22

(a) (b) (c)

(d) (e) (f)

Fig. 4: Preamble allocations computed by the exhaustive search, ideal algorithm and

mathematical analysis against the DRL-based approach in 2-slice scenario (a)-(b)-(c)

respectively for the CRF and (d)-(e)-(f) for the PRF reward function.

B. Benchmarks for Simulations

In order to evaluate how the proposed technique based on RL gets close to the optimal solution,

it is compared with an exhaustive search technique in addition to the analyses presented in Sec.

V. In exhaustive search, all possible preamble allocations for a given traffic load are searched

through and the best preamble allocation is chosen. The same system parameters are used in the

exhaustive search.

The performance of the proposed method is also compared with an unsliced scenario. In this

scenario, there is only one slice in the system and all preamble requests belong to that slice. In

DRAFT September 2021



23

(a) (b) (c)

Fig. 5: The ratio of dropped messages to all transmitted messages for 2-slice scenario while

the arrival rate of second slice consistently increased. (a)-(b)-(c) show the performance for

CRF, PRF and ideal respectively.

(a) (b) (c)

Fig. 6: The average waiting time for 2-slice scenario while the arrival rate of second slice

consistently increased.(a)-(b)-(c) show the performance for the CRF, PRF and ideal

respectively.

such a case, nunsliced is the sum of the number of new arrival preamble requests to all slices.

As a result, the total number of new arrival requests does not change between the unsliced and

sliced scenarios. That gives us a comparison basis between the performances of slices of the

proposed model and the unsliced scenario.

September 2021 DRAFT



24

(a) (b) (c)

Fig. 7: The performance of the proposed method to 3 network slices while the arrival rate of

third slice consistently increased

(a) (b) (c)

Fig. 8: The performance of the ideal algorithm to 3 network slices while the arrival rate of

third slice consistently increased

Finally, the ideal algorithm given as a baseline in [16] is used for comparison. The ideal

algorithm assumes that the exact number of preamble request counts for a given RAO (bj) is

known for each priority. It is noted that the preamble request count for the next RAO for slice

j, bj , is found by adding the number of new arrivals (nj) to the number of nodes which has

not transmitted W times yet. Then, by using the Equation 25 in [16], the number of reserved

DRAFT September 2021



25

preambles to slice j (mj) can be found in each RAO.

M =
N∑
j=1

mj =
N∑
j=1

bj

− ln(
kj∑N
i=1 ki

)− ln(x)
(25)

Here, x denotes the proportionality factor which satisfies the above equation. Assuming bj values

are known, x is also can be found by solving the equation and hence, mj values are obtained.

C. Simulation Results

Firstly, the proposed DRL-based approach is compared with the mathematical analysis given

in Sec. V, the exhaustive search and the ideal algorithm for the scenario with 2 slices. Since the

2-slice scenario has a smaller state space, it is preferred for a baseline comparison. Fig. 4 plots

the optimum number of reserved preambles for each slice that maximizes the reward functions

against mathematical analysis, ideal algorithm and exhaustive search. The results show that the

preamble allocations which yield maximum rewards for each technique behave similarly.

Fig. 5 demonstrates the ratio of dropped messages to all transmitted messages in a ran-

dom access opportunity in the 2-slice scenario. The results for the reward functions CRF,

PRF and ideal algorithm are given in Fig. 5a, Fig. 5b and Fig. 5c respectively. While the

value of normalized arrival rate of the high-priority slice approaches to 0.3, the total load

n1/M + n2/M ≈ 0.38 exceeds the capacity 1/e ≈ 0.37. In both figures, the normalized arrival

rate of the high-priority slice rises up to n2/M ≈ 0.39 and the total load in that maximum point

passes (n1 + n2)/M = 26/54 ≈ 0.48. In Fig. 5, while the high-priority slice outperforms the

unsliced case for both reward functions, the low-priority slice also gets a considerable amount of

reserved preambles. Fig. 5a points out that the high-priority slice using CRF can satisfy almost

all preamble requests so that preamble request messages are nearly not dropped even when the

total load passes (n1+n2)/M = 25/54 ≈ 0.46. On the other hand, the unsliced plot has a sharp

increase after passing the maximum normalized traffic load limit that the random access channel

can handle (1/e ≈ 0.37).

September 2021 DRAFT



26

For the same scenario, Fig. 6 presents the average waiting time, which denotes how much time

successful preamble requests waited in the message backlog on average. If there is no successful

preamble request in the random access opportunity, the average waiting time can not be calculated

for that random access opportunity. Nevertheless, to show the performance, the value is set to

the maximum average waiting time which is 10×W ms. The average waiting time for the high-

priority slice almost stays constant despite the increasing traffic rate. On the other hand, the

average waiting time for the high-priority slice for PRF is higher in comparison to the waiting

time of the same slice for CRF. Moreover, while PRF scheme distributes the preambles more

closely to two slices as seen in Fig. 4, when the total load passes (n1+n2)/M = 21/54 ≈ 0.39,

the dropped preamble requests from high-priority slice are dramatically increased. Therefore,

the results which use only CRF are presented in the rest of the experiments.

The simulation results for the 3-slice scenario is given in Fig 7. As noted above, here the

following performance metrics are evaluated for only the CRF reward function. At time t = 0,

n1 = 5, n2 = 4, n3 = 2 and the relation between number of reserved preambles is m1 >

m2 > m3. Since the total load is ((n1 + n2 + n3)/54 ≈ 0.20) < (1/e ≈ 0.37), the proposed

method allocates more preambles to 1st and 2nd slices as shown in Fig. 7a in order to relieve

the traffic to lower priority slices when the high-priority slice easily handles the traffic. As

n3 increases, the proposed method aggressively increases the reserved preambles count for the

3rd slice in order to avoid dropping messages and long average waiting. The proposed method

manages not to drop any preamble allocation requests from the 3rd slice even the total load

passes (n1 + n2 + n3)/M = 26/54 ≈ 0.48. The average waiting time for the 3rd slice follows

a horizontal line up to the normalized arrival rate of 0.3. After that, it slightly increases due to

high load on the random access channel; yet, the proposed method is able to prevent a sharp

increase. On the other hand, the unsliced curve shows a sharp increase after passing the maximum

normalized traffic load limit that the random access channel can handle (1/e ≈ 0.37), as in the

two-slice scenario.

DRAFT September 2021



27

(a) (b)

Fig. 9: The timeline simulation graphs for 3-slice (a) and for 5-slice (b) using CRF

Fig. 5c, 6c and 8 demonstrates the behaviour of the ideal algorithm for scenarios with 2-slice

and 3-slice. It slightly prioritize the slices in a similar way to the unsliced plot with respect to

their prioritization levels in the figures. Furthemore, Fig. 8a shows that for the 3-slice scenario

it prefers to allocate more number of preambles to the 3rd slice even in the beginning of the

scenario when the total load is much less than 1/e ≈ 0.37 and normalized arrival rate for the 1st

slice is highest. As a result of using the ideal algorithm, there are dropped preamble requests

observed in the 1st slice even at the early stage of the scenario when the arrival rate of the 3rd

is slice between 0.05 and 0.1 as and the total load is 0.24 shown in Fig. 8b.

D. Performance of Reinforcement Learning Based Method in a Dynamic Environment

In this part, the temporal behavior of the proposed method is presented to show how it reacts

to changes in the traffic demands and how much time it is needed to rearrange the preamble

allocations to meet the requirements. Different from the previous experiments, here not only the

requests of the high-priority service change, but all service requests may also vary in time. The

September 2021 DRAFT



28

(a) (b)

Fig. 10: The timeline simulation graphs for 3-slice (a) and for 5-slice (b) using the ideal alg.

simulations for the 5-slice scenario are also run in addition to the 3-slice scenario. For these

simulations, only CRF is used as the reward function. The traffic pattern and the behavior of

the proposed method are shown in Fig. 9 for both scenarios. The uppermost plots in Fig. 9a

and 9b show the normalized arrival rate for each slice over time. The following below plots

show the response of the proposed method to the changing environment as reserved preamble

counts for each slice. The next below plots demonstrate the collision rates of each slice in that

random access opportunity which is found using cj/mj . Finally, the bottom plots show the ratio

of dropped messages to all transmitted messages on that random access opportunity. The same

scenarios are implemented with also the ideal algorithm. The performance of the ideal algorithm

is plotted in Fig. 10.

Fig. 9a plots the simulation results for the 3-slice scenario. From t = 0 to t = 2, the reserved

preamble count for each slice stays almost constant since there exists no congestion and change

in traffic. At t = 2, λ1 increases suddenly while other slices still have the same normalized

DRAFT September 2021



29

arrival rates. After a reaction time of approximately 50ms, the proposed method gives most of

the preambles to slice-1 immediately. First, the collision rate of slice-1 increases a little, then,

immediately drops thanks to the reallocation of preambles. Similarly, at t = 2.5, λ2 increases to

a higher value than λ1. Right after, m2 increases and slice-2 gets a major part of the preambles.

Up until t = 3, m1 and m2 stays around the same levels with little difference between them.

In Fig. 9a, the total load exceeds the total capacity at t = 3. At this point, since the preamble

resources are not enough for all slices, the method allocates most of the preambles to the high-

priority slice, slice-3. Therefore, m3 spikes, m2 is nearly halved and m1 is dropped to around

between 5 and 10. As all slices cannot be supported at the same time, the proposed method

sacrifices the low-priority slice in favor of other slices. The collision rate for the slice-1 oscillate

around 1 up to t = 8. The collision rates for the other two slices change between 0.2 and 0.8, and

the collision rate for slice-2 is higher than slice-3 even if the traffic to slice-3 is more than twice.

In the last two seconds, λ3 falls of suddenly, right after, m3 also drops. m1 and m2 increase

to their previous values where right before λ3 increases. Then, respectively λ2 and λ3 drops to

their previous values and the preamble allocation returns to its initial assignment.

Similarly, Fig. 9b plots the timeline simulation for the 5-slice scenario. From t = 0 to t = 2,

there is no congestion and the preamble allocation of slices does not change. During this period,

the number of preambles reserved to each slice is proportional to their priority levels. Normalized

arrival rates of slices are increased starting from the low-priority slice to the high-priority slice.

At the end of the simulation, the rates are decreased in the reverse order. The preamble allocation

behavior is similar to the 3-slice scenario and the RL agent successfully prioritizes the slices.

The full load is exceeded when the normalized arrival rate of slice-5 increases. In that case, the

majority of preambles are reserved for slice-5.

Figs. 10a and 10b plot the timeline simulation of the ideal algorithm for 3-slice and 5-slice

scenarios respectively. As pointed out above, the algorithm slightly prioritizes the slices in a

way that the collision rates in each figure are very close to each other, hence the allocation of

September 2021 DRAFT



30

each slice j is slightly better than the allocation of slice j − 1. The plots in the time intervals

[2,3] and [8,9] for 3-slice in Fig. 10a and, in the time intervals [2,4] and [7,9] for 5-slice in

Fig. 10b show that the ideal algorithm can not prevent collisions for lower priority slices when

the total load in the network is less than (1/e ≈ 0.37). Fig. 9 shows that DRL-based approach

manages not to drop any preamble requests in these time intervals and achieves to keep the

collision rates lower than the ideal algorithm does. On the other hand, when the arrival rate

of the high-priority slice increases and the total load becomes bigger than (1/e ≈ 0.37), the

DRL-based approach sacrifices the lowest priority slices (1st one in 3-slice scenario, 1st and

2nd ones in 5-slice scenario) in favour of higher priority ones. Although the ideal algorithm

tries to keep the collision rates under control for even the lowest priority slice when the total

load is bigger than (1/e ≈ 0.37), it may not be the best behavior when the total load is such

high. Especially for some real life scenarios such as where a remote surgery slice has the highest

priority and a sensor-IoT slice has the lowest priority, the lowest priority slice could need to be

sacrificed.

In summary, in timeline simulations, the sudden increase of arrival preamble requests to slices

from low-priority to high-priority and the sudden decrease from high-priority to low-priority

respectively are tested in the timeline. For both the 3-slice and 5-slice scenarios, when the

traffic of the low-priority slice increases the preamble allocation is increased in favour of the

low-priority slice. Following, the traffic to slices increases from lower to higher priority ones

respectively and in each increase more preambles are reserved to the slice having lastly increased

traffic. The moment when the traffic to high-priority slice increased, the total normalized arrival

rate reaches 0.39 so that passes the full load (1/e ≈ 0.37). After that, the proposed method

suddenly allocates the vast majority of preambles to the high-priority slice. Nonetheless, Fig. 9a

and 9b show that the proposed method does not neglect performances of lower priority slices,

while the collision rate of the high-priority slice is kept under control. With approaching to the

end of the timeline, the traffic assigned to slices decreases starting from the high-priority slice

DRAFT September 2021



31

to the low-priority slice respectively. The preamble allocation of the proposed method acts in a

reverse direction. In the end, the preamble allocations return to the first position. These results

confirm the effectiveness and adaptability of the proposed approach in a dynamic environment.

E. Two Priorities Scenario Used in [16]

The authors in [16] propose to assign weights γi to services based on their priorities. In

this specific scenario, they use two services having priority weights γ1 = 2 and γ2 = 1. For

each service, 10,000 devices are activated over 10 seconds (2000 RAO slots each 5ms) with

uniform arrival for the low-priority service and bursty beta arrival for the high-priority service.

They stated that their algorithm produces results close to the ideal case in which the average

delay (slots/device) is close to 0. In addition, they specify the average delay for the high-priority

service is less than for the low-priority scenario. For a fair comparison, the same scenario is

implemented for 2-slice and the results are plotted in Fig. 11. Please note that the RAO period is

taken as 5ms here, whereas it is taken as (10ms) in previous experiments. Although the authors

use W = ∞ and this value is taken as 10 in this current study, since no dropped preamble

request is observed in these simulations, W has no effect on the comparison.

Fig. 11 shows the comparison of the proposed approach with the ideal algorithm on the

scenario as defined above [16]. As shown in the figure, the average waiting time never reaches

5ms for both slices. The average waiting times for the high-priority slice are 0.98 ms in the DRL-

based approach and 0.65 ms in the ideal algorithm. The average waiting times for the low-priority

slice are 1.2 ms in the DRL-based approach and 4.7 ms in the ideal algorithm. Please note that

the average waiting time is how much time successful preamble requests waited in the message

backlog on average. Since it is taken as the time spent by one device/service for successfully

accessing into the channel (slots/device) in [16], the average waiting time here is divided by

the slot interval (5ms) in order to make a fair comparison with [16]. For the high-priority slice,

it is calculated as 0.98ms/5ms ≈ 0.2 by the proposed approach and as 0.65ms/5ms ≈ 0.13

September 2021 DRAFT



32

(a) (b)

Fig. 11: The timeline simulation graphs for 2-slice using the two priority scenario for

DRL-based method (a) and for ideal algorithm (b) in [16]

by the ideal algorithm. For the low-priority slice, it is calculated as 1.2ms/5ms ≈ 0.24 and

4.7ms/5ms ≈ 0.94 for both algorithms respectively.

To sum up, the proposed method can successfully prioritize the slices in a way that the

average delay (slots/device) of each slice is close to 0. Moreover, the high-priority slice has a

lower average delay than the low-priority slice. It is also stated in [16] that they obtain average

delays (slots/device) close to 0 without specifying exact values. Although the ideal algorithm

manages to keep average delays (slots/device) lower than 1, there is a noticeable difference

between the slices (0.94 for the low-priority slice and 0.13 for the high-priority slice). Even

the ideal algorithm performs slightly better than the proposed approach for the high-priority

slice based on the average delay metric, it drops a few number of preamble requests from the

low-priority slice. As stated above, the proposed approach does not drop any requests.

DRAFT September 2021



33

VII. DISCUSSION

The experimental results show the effectiveness and adaptability of the proposed DRL-based

approach in a dynamic environment. Different reward functions are evaluated and shown that

penalizing collisions in addition to rewarding successful preambles gives the best performance.

When penalizing is used in the reward function, reinforcement learning act more quickly and

sharply due to the very nature of penalizing, which is fed into the system in a very short time (in a

few RAO). However, using the other functions which do not include penalizing, the response time

of the algorithm takes longer and it adapts more softly to the changing environment. Moreover,

when penalizing is applied in reward functions, the number of reserved preambles are inclined

to be given to lower priority slices when there is no traffic congestion. In other words, more

importance is given to lower slices, when there is no high traffic for higher priority slices. This is

the reason behind why the DRL-based approach using penalizing can perform better than ideal

algorithm under some scenarios. On the other hand, in the event of traffic congestion DRL-based

approach perform a steady and more prioritizing attitude in favour of higher priority slices when

compared to ideal algorithm. There exists an obvious opposite attitude of DRL-based approach

towards slices between low and high traffic congestion cases. These outcomes stand for DRL-

based approach can change its pattern of prioritization behaviour under varying network traffic

load.Please note that the same priority coefficient values for slices are employed in all reward

functions in order to have a comparison basis. However, these coefficients could affect reward

functions in different ways, therefore, in the future, different coefficients could be applied for

different reward functions.

The running time of the proposed approach is proportional to the TRPO algorithm. However,

an increase in the number of slices, which is varying in the experiments, causes an expansion

in the state space. Recalling M is the number available preambles, the state space size for N

number of slices can be calculated as (M+3N−1)!
M !(3N−1)!

since there are 3 state space members sj ,cj

September 2021 DRAFT



34

and uj . The action space size is (M+N−1)!
M !(N−1)!

since the action list includes N members. Therefore,

increasing N by 1, the state space size expands nearly M3 times and the action space size

expands M times. Since the solution space is the mapping from the state space to the action

space, increasing N expands the solution space immensely. It is not easy to build a mathematical

model for representing such a complex solution space. However, DRL is known to be able to

diminish the curse of dimensionality caused by the state space theoretically [50].

In this study, the proposed approach is trained and evaluated by using simulated network

traffic, since real world RACH preamble traffic data is not available. It is hard to collect such

data from eNodeBs since they can not detect how many nodes are available in the environment.

Moreover, since the nodes in the environment are distributed and mobile, collecting such data

synchronously is hard. Due to all of these reasons, randomly generated traffic is used in training

in this study. On other hand, having a real world data for different service types which have

various QoS help to generate a more precise model for that environment. Moreover, in the

experiments of this current study, the effects of some parameters such as transmission power

of nodes, distance of nodes to eNodeBs, deafness of nodes, path loss and shadowing are not

simulated. In the future, these parameters could be included in the experiments for more realistic

simulations.

VIII. CONCLUSION

With the increasing significance of RAN resource allocation in 5G, flexible preamble allocation

becomes an important problem. This study aims to find a solution to the RAN slicing problem

by prioritizing slices. It explores deep reinforcement learning (DRL) to solve the optimum

resource allocation problem in RAN slicing. Here, three reward functions are proposed for the

RL formulation and mathematically analyzed.

Since at least 3 service types are defined for 5G [5] and, some studies propose 5 service types

[6] for 5G in the literature, 3-slice and 5-slice scenarios are implemented in the experiments.

DRAFT September 2021



35

The proposed approach is evaluated by the following metrics: the number of reserved preambles,

the average waiting time and the ratio of dropped messages to all transmitted messages. The

proposed approach is compared with a recent study [16] in the literature. Moreover, in order to

show its effectiveness it is compared with the unsliced scenario and the exhaustive search, in

which all possible preamble allocations for a given traffic load are searched through and the best

preamble allocation is chosen. The results show that the proposed method distributes preambles

to different service classes according to their priorities successfully. It produces comparable

results with [16]. In some network scenarios, it outperforms the ideal algorithm given in [16]

by giving importance to lower priority slices in addition to higher priority slices when there is

no traffic congestion.

To sum up, the proposed DRL-based approach is shown to be a suitable approach for RAN

slicing, since it adapts to changes in the environment in a timely manner. It also can be deployed

as an instantiable Virtual Network Function (VNF) to eNodeBs. Afterwards, eNodeBs slice

PRACH preambles for network service classes that have different QoS needs under the dynamic

environment. The VNF can be instantiated at the very beginning of eNodeB operation, then it

can step in when there exists network congestion like in a power outage and restore scenario or

in a temporary dense network formation scenario.

REFERENCES

[1] J. Kim, J. Lee, J. Kim, and J. Yun, “M2m service platforms: Survey, issues, and enabling technologies,” IEEE

Communications Surveys Tutorials, vol. 16, no. 1, pp. 61–76, First 2014.

[2] “Internet of things (iot) connected devices installed base worldwide from 2015 to 2025 (in billions),” https://www.statista.

com/statistics/471264/iot-number-of-connected-devices-worldwide/, accessed: 2019-10-12.

[3] Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022 white paper,” (Visited December 2019)

[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-

paper-c11-741490.html.

[4] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag,

L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal,

September 2021 DRAFT

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/


36

asynchronous waveforms for future mobile applications,” IEEE Communications Magazine, vol. 52, no. 2, pp. 97–105,

2014.

[5] P. Marsch, Bulakci, I. Silva, P. Arnold, N. Bayer, J. Belschner, T. Rosowski, G. Zimmermann, M. Ericson, A. Kaloxylos,

P. Spapis, A. Ibrahim, Y. Yang, S. Singh, H. Celik, J. Gebert, A. Prasad, F. Moya, M. Säily, and J. Monserrat, “D2.2 draft

overall 5g ran design,” 06 2016.

[6] S. Vural, N. Wang, P. Bucknell, G. Foster, R. Tafazolli, and J. Muller, “Dynamic preamble subset allocation for ran slicing

in 5g networks,” IEEE Access, vol. 6, pp. 13 015–13 032, 2018.

[7] W. Tian, M. Fan, C. Zeng, Y. Liu, D. He, and Q. Zhang, “Telerobotic spinal surgery based on 5g network: The first 12

cases,” Neurospine, vol. 17, pp. 114–120, 03 2020.

[8] M. Vilgelm, S. Schiessl, H. Al-Zubaidy, W. Kellerer, and J. Gross, “On the reliability of lte random access: Performance

bounds for machine-to-machine burst resolution time,” in 2018 IEEE International Conference on Communications (ICC),

May 2018, pp. 1–7.

[9] J. Oueis and E. Strinati, “Uplink traffic in future mobile networks: Pulling the alarm,” 05 2016, pp. 583–593.

[10] Ericsson, “Ericssonmobility report, on the pulse of the networked society,” 2015. [Online]. Available: http:

//www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

[11] Y. Dong, Z. Chen, P. Fan, and K. B. Letaief, “Mobility-aware uplink interference model for 5g heterogeneous networks,”

IEEE Transactions on Wireless Communications, vol. 15, no. 3, pp. 2231–2244, 2016.

[12] C. Nguyen, H. Dinh Thai, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of deep reinforcement

learning in communications and networking: A survey,” 10 2018.

[13] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. Wang, “Deep reinforcement learning for mobile 5g and beyond:

Fundamentals, applications, and challenges,” IEEE Vehicular Technology Magazine, vol. 14, no. 2, pp. 44–52, 2019.

[14] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano, and O. Caicedo Rendon, “A

comprehensive survey on machine learning for networking: Evolution, applications and research opportunities,” Journal

of Internet Services and Applications, vol. 9, 05 2018.

[15] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for dynamic resource optimization in 5g radio access network

slicing,” in 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links

and Networks (CAMAD), 2020, pp. 1–6.

[16] J. Liu, M. Agiwal, M. Qu, and H. Jin, “Online control of preamble groups with priority in massive iot networks,” IEEE

Journal on Selected Areas in Communications, pp. 1–1, 2020.

[17] W. T. Toor and H. Jin, “Comparative study of access class barring and extended access barring for machine type

communications,” in 2017 International Conference on Information and Communication Technology Convergence (ICTC),

Oct 2017, pp. 604–609.

[18] N. Zangar, S. Gharbi, and M. Abdennebi, “Service differentiation strategy based on macb factor for m2m communications

DRAFT September 2021

http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf


37

in lte-a networks,” in 2016 13th IEEE Annual Consumer Communications Networking Conference (CCNC), Jan 2016, pp.

693–698.

[19] N. Li, C. Cao, and C. Wang, “Dynamic resource allocation and access class barring scheme for delay-sensitive devices

in machine to machine (m2m) communications,” Sensors, vol. 17, no. 6, p. 1407, Jun 2017. [Online]. Available:

http://dx.doi.org/10.3390/s17061407

[20] Y. Sim and D.-H. Cho, “Performance analysis of priority-based access class barring scheme for massive mtc random

access,” IEEE Systems Journal, vol. 14, no. 4, pp. 5245–5252, 2020.

[21] K.-D. Lee, S. Kim, and B. Yi, “Throughput comparison of random access methods for M2m service over LTE networks,”

in 2011 IEEE GLOBECOM Workshops (GC Wkshps), Dec. 2011, pp. 373–377, iSSN: 2166-0077.

[22] T. Lin, C. Lee, J. Cheng, and W. Chen, “Prada: Prioritized random access with dynamic access barring for mtc in 3gpp

lte-a networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2467–2472, Jun 2014.

[23] K. Lee, M. Reisslein, K. Ryu, and S. Kim, “Handling randomness of multi-class random access loads in lte-advanced

network supporting small data applications,” in 2012 IEEE Globecom Workshops, Dec 2012, pp. 436–440.

[24] C. Kalalas, F. Vazquez-Gallego, and J. Alonso-Zarate, “Handling mission-critical communication in smart grid distribution

automation services through lte,” in 2016 IEEE International Conference on Smart Grid Communications (SmartGrid-

Comm), Nov 2016, pp. 399–404.

[25] M. Vilgelm, M. Gürsu, W. Kellerer, and M. Reisslein, “Latmapa: Load-adaptive throughput-maximizing preamble allocation

for prioritization in 5g random access,” IEEE Access, vol. PP, pp. 1–1, 01 2017.

[26] X. Zhao, J. Zhai, and G. Fang, “An access priority level based random access scheme for qos guarantee in td-lte-a systems,”

in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sep. 2014, pp. 1–5.

[27] D. Pacheco-Paramo, L. Tello-Oquendo, V. Pla, and J. Martinez-Bauset, “Deep reinforcement learning mechanism for

dynamic access control in wireless networks handling mmtc,” Ad Hoc Networks, vol. 94, p. 101939, 2019. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S1570870519300976

[28] A. Mohammed Mikaeil, W. Hu, and L. Li, “Joint allocation of radio and fronthaul resources in multi-wavelength-enabled

c-ran based on reinforcement learning,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5780–5789, Dec 2019.

[29] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for mobile edge computing: A deep reinforcement

learning approach,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2019.

[30] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation offloading and resource allocation for

mec,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC), April 2018, pp. 1–6.

[31] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning for offloading and resource allocation in vehicle edge

computing and networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 11 158–11 168, Nov 2019.

[32] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource allocation in hetnets with hybrid energy supply: An

actor-critic reinforcement learning approach,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 680–692,

Jan 2018.

September 2021 DRAFT

http://dx.doi.org/10.3390/s17061407
http://www.sciencedirect.com/science/article/pii/S1570870519300976


38

[33] Z. Chen and D. B. Smith, “Heterogeneous machine-type communications in cellular networks: Random access optimization

by deep reinforcement learning,” in 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1–6.

[34] C. Chang and N. Nikaein, “Ran runtime slicing system for flexible and dynamic service execution environment,” IEEE

Access, vol. 6, pp. 34 018–34 042, 2018.

[35] H. D. R. Albonda and J. Pérez-Romero, “An efficient ran slicing strategy for a heterogeneous network with embb and v2x

services,” IEEE Access, vol. 7, pp. 44 771–44 782, 2019.

[36] D. Marabissi and R. Fantacci, “Highly flexible ran slicing approach to manage isolation, priority, efficiency,” IEEE Access,

vol. 7, pp. 97 130–97 142, 2019.

[37] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, “Reinforcement learning for slicing in a 5g flexible ran,”

Journal of Lightwave Technology, vol. 37, no. 20, pp. 5161–5169, Oct 2019.

[38] B. M. Sesia S., Toufik I., The UMTS Long Term Evolution: From Theory to Practice, 2nd Edition, 2011.

[39] F. H. S. Pereira, C. A. Astudillo, T. P. C. De Andrade, and N. L. S. Da Fonseca, “Prach power control mechanism for

improving random-access energy efficiency in long term evolution,” in 2018 IEEE 10th Latin-American Conference on

Communications (LATINCOM), 2018, pp. 1–6.

[40] J. Choi, J. Ding, P. Le, and Z. Ding, “Grant-free random access in machine-type communication: Approaches and

challenges,” 12 2020.

[41] V. Savaux, A. Kountouris, Y. Louët, and C. Moy, “Modeling of Time and Frequency Random Access Network and

Throughput Capacity Analysis,” EAI Endorsed Transactions on Cognitive Communications, vol. 3, no. 11, p. e2, 2017.

[Online]. Available: https://hal.archives-ouvertes.fr/hal-01531239

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.

[43] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol. abs/1701.07274, 2017. [Online]. Available:

http://arxiv.org/abs/1701.07274

[44] P. Coady, “trpo,” https://github.com/pat-coady/trpo, 2018. [Online]. Available: https://doi.org/10.5281/zenodo.1183378

[45] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning Representations,

12 2014.

[46] S. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” in International Conference on Learning

Representations, 2018.

[47] M. Koseoglu, “Pricing-based load control of m2m traffic for the lte-a random access channel,” IEEE Transactions on

Communications, vol. 65, no. 3, pp. 1353–1365, March 2017.

[48] M. Koseoglu, “Lower bounds on the lte-a average random access delay under massive m2m arrivals,” IEEE Transactions

on Communications, vol. 64, no. 5, pp. 2104–2115, 2016.

[49] M. Koseoglu, “Smart pricing for service differentiation and load control of the lte-a iot system,” in 2015 IEEE 2nd World

Forum on Internet of Things (WF-IoT), Dec 2015, pp. 187–192.

DRAFT September 2021

https://hal.archives-ouvertes.fr/hal-01531239
http://arxiv.org/abs/1701.07274
https://github.com/pat-coady/trpo
https://doi.org/10.5281/zenodo.1183378


39

[50] C. P. Andriotis and K. G. Papakonstantinou, “Managing engineering systems with large state and action spaces through

deep reinforcement learning,” 2018.

September 2021 DRAFT


	Introduction
	Related Work
	System Model
	Reinforcement Learning Based Preamble Grouping
	Problem Representation
	Training

	Reward Function Analysis
	Successful preambles reward function (SRF)
	Proportional reward function (PRF)
	Collision-penalizing reward function (CRF)

	Evaluation and Results
	Traffic Distribution
	Benchmarks for Simulations
	Simulation Results
	Performance of Reinforcement Learning Based Method in a Dynamic Environment
	Two Priorities Scenario Used in OnlinePreambleGroupControl 

	Discussion
	Conclusion
	References

