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Abstract. There have been numerous studies proposed for detecting botnets in
the literature. However, it is still a challenging issue as most of the proposed
systems are unable to detect botnets in their early stage and they cannot perform
satisfying performance on new forms of botnets. In this study, we propose an
evolutionary computation-based approach that relies on grammatical evolution
to generate a botnet detection algorithm automatically. The performance of the
proposed flow-based detection system reveals that it detects botnets accurately in
their very early stage and performs better than most of the existing methods.

Keywords: Botnet · flow-based detection · evolutionary computation · grammat-
ical evolution

1 Introduction

Botnet is a number of compromised devices called as bots or zombies which are con-
trolled through a special Command and Control (C&C) channel by an intruder node
known as botmaster. By taking advantage of computational resources of bots, botnets
are used for performing several distributed illegal activities such as spamming, dis-
tributed denial-of-service attacks. The increasing size of botnets have now reached to
an unprecedented level such that more than 80% of the Internet traffic is propagating
through botnets [1]. Distributing such bots are cheap, however they could have drastic
effects on the economy. It is reported that malware distribution has caused a damage
of 13.2 billion to 67.2 billion USD to the global market within only two years in the
past [1]. Hence, developing robust and effective detection systems towards the different
forms of botnets has become a must.

In this study, we proposed an evolutionary computation-based botnet detection sys-
tem for early detection of botnets. Grammatical Evolution (GE) is employed due to
its capability in generating interpretable computer programs for security experts. As
inputs to GE, the TCP/UDP packet flows have been preferred to the packet payloads
due to allowing us to inspect encrypted or obfuscated network traffic. Since most of
the network traffic today is encrypted, monitoring information in the packet headers for
a possible suspicious activity has become the only way. Furthermore, since the packet
headers correspond to only a small fraction of the whole network traffic, it reduces the
computational overhead. In addition, working on the smaller time windows rather than
all individual flows enables our system to detect bot activity before the attack phase. To
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the best of the authors’ knowledge, this is the first study that explores the use of gram-
matical evolution for detecting botnets at the early stage and that uses the most recent
dataset in the literature for identifying new botnet types.

The rest of the paper is organized as follows: Section 2 summarizes the related ap-
proaches in the literature. Section 3 explains grammatical evolution algorithm in detail.
The proposed framework is outlined in Section 4. The experimental setup and results
are provided in Section 5. Section 6 concludes the paper.

2 Related Work

Machine learning-based techniques have already been proposed to detect different types
of botnets (i.e., IRC, HTTP, and P2P) within the recent years. However, most of these
approaches employ deep packet inspection, which cannot analyze encrypted traffic.
Given that the majority of today’s network traffic is encrypted, researchers have moved
their focus on developing flow-based detection systems as complementary to such sys-
tems recently. In this section, such flow-based detection approaches are reviewed.

Huseynov et al. [2] proposed a method based on the similarity of communication
patterns between botmasters and bots. It relies on a semi supervised method where only
10% of all traffic was labeled. Firstly, similar activities are clustered by using ant colony
optimization and then, clusters are identified based on their similarities with the labeled
data. Narang et al. [3] applied different feature selection methods for identification of
botnet activities. The authors concluded that built time considerably increases when the
full feature set is applied.

Kirubavathi et al. [4] proposed a method for detecting HTTP-based botnets. There-
fore, the inputs to the proposed neural network consist of only TCP related features.
They extended their study in [5] to study other types of communication schemes (IRC
& P2P) and to investigate other classification methods (i.e., J48, Naı̈ve Bayes, SVM).
In another study based on neural networks, Nogueira et al. [6] proposed a framework
called botnet security system (BoNeSSy) where historical profiling provided by each
application were used to train the network.

A behavioral-based P2P botnet identification system was proposed by Saad et al [7].
They regarded network traffic as data stream where bots tend to behave differently over
time. The authors also studied the ability of five different learning algorithms for on-
line botnet detection. Although the performance of these algorithms was promising,
they were not enough to satisfy all the requirements of an online detection system. An-
other behavioral-based botnet detection method by Wang et al. [8] identifies malicious
domain names and IP addresses by using fuzzy pattern recognition technique.

Livadas et al. [9] proposed an IRC-based botnet detection system of two stages.
The first stage filters out non-chat flows. In the second stage, real chat flows are distin-
guished from botnet flows using J48, Naı̈ve Bayes, and Bayesian network classifiers.
Fedynyshyn et al. [10] proposed a host-based approach to detect botnet traffic by also
employing random forest and J48 classification algorithms.



Early Detection of Botnet Activities using Grammatical Evolution

3 Grammatical Evolution

Grammatical evolution is an evolutionary computation technique inspired by the bio-
logical process of generating a protein from the genetic material of an organism. It first
generates a certain number of individuals which represent candidate solutions for the
targeted problem and then, examines the ‘fitness’ of each individual and finally creates
new individuals by applying genetic operators (such as crossover, mutation, and, etc.).
These are the steps of a single evolution step. The best solution is yielded by GE at the
end of the evolution process.

GE is capable of generating a solution (program) in any language. The grammar of
this language is expressed in a notation named Backus-Naur Form (BNF). BNF gram-
mars consists of terminals, which are the end-items in the language and nonterminals,
which can be expanded by the terminals or nonterminals. A grammar is represented by
a four-tuple {T,N,P,S}. T represents the terminal set, N represents the nonterminal set,
P is production rule set comprising of a number of grammar rules, and S is a start sym-
bol indicating the entry-point of the grammar. To generate a program, GE makes use of
a 8-bit binary string genomes (called codons) that are assigned to every individual and
mapped to a sequence of integer values. The mapping process in GE results in a higher
genetic diversity in the population than the other evolutionary-based approaches, which
is the main advantage of GE [11].

To elaborate the process of automatic program generation, one-step evolution of
GE on a symbolic regression problem is explained. Let the problem to be examined be
f (X) = X4 + X3 + X2 + X, and the BNF notation for the grammar be:

(1) <expr>::= <expr><op><expr> (0)

| (<expr><op><expr>) (1)

| <pre-op>(<expr>) (2)

| (<var>) (3)

(2) <op>::= + (0)

| - (1)

| / (2)

| * (3)

(3) <pre-op>::= Sin (0)

| Cos (1)

| Exp (2)

| Log (3)

(4) <var>::= X (0)

| 1.0 (1)

The symbols enclosed by brackets (<>) are the nonterminals and others are the termi-
nals, starting symbol (S) is <expr>. Suppose the genome of an individual is:

220 35 84 42 251 15 47 66

The first codon value (220 in this example) is used to expand the first nonterminal item
in the language, which is initially indicated by S. Every encountered nonterminal in the
BNF is replaced with the following rule:

rule = (codon integer value) MOD (# o f rules o f nonterminal)
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The first nonterminal here is <expr> and the codon value is 220 which selects rule
0 (220 MOD 4 = 0) and <expr> is replaced by <expr><op><expr>. The left-most
nonterminal item is still <expr> but the codon value is now 35 which results in a selec-
tion rule of 3 (35 MOD 4 = 3). Now the language has become (<var>)<op><expr>.
This process continues until all nonterminal items are replaced to terminals. In the case
where the last codon value is reached but there still remains nonterminals in the lan-
guage, the codon pointer switches back to the first codon value that is 220 –this process
is called wrapping. The final language generated according to the genome and the gram-
mar is ‘(X) / (1.0)’. Please refer to [12] for the detailed description of the algorithm.

4 The Proposed Method

The proposed approach comprises of three consecutive phases. The first phase involves
obtaining traffic flows in different time windows from a real-world dataset (in .pcap
format) in order to determine the optimal window size for obtaining high detection
accuracy in botnet detection. Moreover, a number of distinctive features of network
flows are extracted for botnet detection. In the second phase, grammatical evolution is
employed to evolve a detecting algorithm automatically by using these features. The
final phase evaluates the performance of all evolved detection algorithms. The general
framework of our approach has been demonstrated in Figure 1. Each phase is explained
in detail in the following two subsections.
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Fig. 1. General framework of the proposed botnet detection system

4.1 Flow generation and feature extraction

A flow is a collection of packets having the same five-tuple that is source IP, destination
IP, source port, destination port, and protocol. These features can be extracted directly
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from the TCP/UDP headers. However an extra computation is required to extract addi-
tional statistical features from these packets such as flow duration. CICFlowMeter [13],
a Java-based bidirectional flow generator and analyzer tool integrating jNetPcap [14]
library, has been used to generate traffic flows and to extract all traffic-related features
from these flows. This tool supports 76 traffic-related statistical features calculated sep-
arately for the forward and backward directions. The identifying attributes like ‘flow
ID’ have been discarded from the feature set as they might not be good indicators es-
pecially when the training and testing data come from different network domains. The
tool terminates a flow depending on the flow timeout or the FIN flag. In this study,
the flow timeout value is set to 30 mins. It labels a flow bot or benign considering the
IPv4 addresses of the sender or the receiver. The more information about the feature
set can be found in [13]. In addition to these features, in this study, bidirectional initial
packet sizes are also extracted from the flow as they are known to be very effective in
identifying botnet activity.

Individual flows are split into different time windows. In order to obtain an appro-
priate window-length, we have conducted a pre-experiment, in which every individual
flow has been windowed from 120 s to 360 s in the multiples of 60 s. The results show-
ing the effect of the window’s size on botnet detection are discussed in Section 5.2. In
the training, the optimal window size of this pre-experiment is used. Moreover, as the
feature values are in a high scale, all features’ values are mapped to a range from 0 to
1.

4.2 Evolution of botnet detection algorithm

In this study, GE has been explored for the evolution of an algorithm which detects
botnets by inspecting the most discriminative features of the flow. Every individual
in GE represents a candidate detection algorithm and is evaluated depending on its
detection ability which has been measured by the following ‘fitness’ equation:

f itness = T P − (ω × FP) (1)

where T P and FP are the true positive and false positive, respectively, andω (=3, empir-
ically found) is a constant factor which increases the magnitude of FP. The idea behind
why ω constant has been introduced into the equation is to avoid over-stimulation to
the botnet patterns as the dataset is highly imbalanced (with extracted 2,390,624 benign
and 79,428 botnet flows). We have employed 5 fold cross-validation and thus the whole
dataset is divided into 5 folds such that 4 of them have been used for training and the
remainder has been used for the testing of the evolved algorithms. Due to the stochastic
nature of evolutionary-based algorithms, we have run GE 10 times per a fold (50 runs
in total). Java-based evolutionary computation toolkit (ECJ) [15] has been used for the
GE implementation. All the GE parameters used during the training have been provided
in Table 1. The parameters not listed here are the default parameters of ECJ.

The BNF grammar for the problem is provided in Figure 2. Traffic-related features
generated through CICFlowMeter and random values (rnd) generated from a uniform
distribution between 0 and 1 are employed as operands. A number of arithmetic and
relational operations as well as mathematical functions are defined as operators. The
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Table 1. GE Parameters

Parameters Value

Functions
+, -, *, /, sin, cos, log, ln, sqrt, abs, exp, ceil, floor, max, min,
pow, mod, <, ≤, >, ≥ ,== ,! =, and, or

Terminals rnd(0,1), features in [13]
Population Size 50 (number of elite individuals = 5)
Crossover probability 0.9
Mutation probability 0.1
Selection strategy Tournament selection (Tournament size: 7)
Generations 1000

detection performance of all detection algorithms has been evaluated on the folds spared
for testing, then the best algorithm has been determined, which corresponds to the final
phase of our methodology. The details regarding this phase is outlined in Section 5.2.

(1) <algorithm> ::= if(<cond>) { alert(); }
(2) <cond> ::= <cond><set-op><cond> | <expr><rel-op><expr>

(3) <expr> ::= <expr><op><expr> | (<expr><op><expr>)

| <pre-op>(<expr>) | <var>

(4) <op> ::= + | - | / | *

(5) <pre-op> ::= sin | cos | log | ln | sqrt | abs | exp | ceil

| floor | max | min | pow | modulus

(6) <rel-op> ::= < | ≤ | > | ≥ | == | ! =

(7) <set-op> ::= and | or

(8) <var> ::= rnd | feature set in [13].

Fig. 2. BNF grammar of the botnet detection problem.

5 Experiments

5.1 Datasets

We have incorporated two datasets. The first dataset is the well-known Information
Security and Object Technology (ISOT) dataset. It contains traffics belonging to the
P2P Storm and Waledac botnets captured from 2007 to 2009. Benign traffics, on the
other hand, were recorded from the everyday traffics such as HTTP web browsing,
gaming packets, torrent packets like Azureus. The second dataset is CICIDS2017. It
was obtained from the traffic generated between July 3 to July 7 in 2017, where different
attacks were implemented for each day. We have used only botnet (Ares) and benign
packets of this dataset captured on July 7. Please refer to [7] and [16] for the detailed
description of the ISOT and CICIDS2017 datasets, respectively.
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5.2 Results

As discussed earlier, we have conducted a pre-experiment in order to investigate the
effect of the window size on botnet detection. GE has been run 5 times under the same
settings given in Table 1 but with 500 generations. The results show that the algorithm
detects bot activity with a higher performance as the window size increases up to 240
s (see Fig. 3). Hence, the optimal window size is set to be 240 s for the evolution of
botnet detection algorithm in this study.
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Fig. 3. Effect of the window size on botnet detection

The best, worst, and the mean statistical findings of the best detection algorithm
generated from every testing fold have been provided in Table 2. As it is shown in the
table, the best algorithm has shown very similar performances on different test settings.
The best performance suggests that the evolved algorithm has been able to detect bot
traffic with an accuracy of 92.92%. The higher rate of precision value shows that the
algorithm has successfully detected bot activities with rare false alarms, which is known
to be crucial for such an imbalanced traffic.

The evolved algorithm that gives the best accuracy is given in Algorithm 1. GE is
known with its ability in generating interpretable programs. Although the best evolved
program is readable, it is not easily interpretable since we have employed a large num-
ber of functions and features (see Figure 2). In addition to that, we have not limited the
length of the generated program. We can conclude from the algorithm that, out of the
78 features, only 31 features have been enough to distinguish the bot traffic from the
benign traffic. With 12 source originated and 11 destination originated features used in
the detection algorithm, it can be deduced that forward and backward related features
have an equal effect on the botnet detection.

In addition to the detection accuracy, the detection phase is another important eval-
uation metric for the botnet detection systems. In this study, we have also analyzed
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Table 2. Statistical performance analysis of the best evolved algorithm

Performances (%)
Best Mean Worst

TP 88.77 88.10 87.17
FP 2.54 2.80 2.98
Precision 97.19 96.93 96.75
Accuracy 92.92 92.65 92.17
F1 Score 92.60 92.30 91.76

if ((Flow_Byts_s + min((Subflow_Bwd_Pkts) , (pow(((Init_Fwd_Win_Byts / (Subflow_Fwd_Byts - 
Fwd_Pkts_s))) , (0.4421))))) < (Fwd_Pkt_Len_Mean mod max(((max(((Fwd_Header_Len + 
floor(ln(pow((pow(((sqrt((pow((Fwd_Header_Len) , (Flow_IAT_Mean)) mod 0.8803)) x 
((Down_Up_Ratio + min((Init_Fwd_Win_Byts) , (Fwd_1st_Payload))) / Bwd_Pkt_Len_Mean))) , 
((((Fwd_Blk_Rate_Avg - ((Bwd_Byts_b_Avg - (Pkt_Size_Avg - Bwd_1st_Payload)) mod 
Bwd_IAT_Std)) x (pow((pow((Bwd_Pkts_s) , (Init_Fwd_Win_Byts))) , (Flow_IAT_Std)) mod 
URG_Flag_Cnt)) + (Init_Bwd_Win_Byts + Subflow_Bwd_Byts))))) , (pow((pow(((Bwd_IAT_Max mod 
(max((Idle_Std) , (Fwd_Pkt_Len_Max)) mod Subflow_Bwd_Pkts))) , (0.3514))) , (0.8459)))))))) 
, ((0.7302 x Bwd_URG_Flags))) + (sin((Bwd_Pkt_Len_Max mod Fwd_Pkt_Len_Std)) x 
Subflow_Bwd_Byts))) , (min((pow((min((Fwd_IAT_Min) , ((Pkt_Len_Mean mod Fwd_1st_Payload)))) 
, (Bwd_Pkt_Len_Max))) , (min((Fwd_PSH_Flags) , (Fwd_Seg_Size_Avg)))))))) {alert();} 

Algorithm 1: The best evolved algorithm by GE

the detection time of the evolved best algorithm. For this purpose, we have considered
59,933 botnet flows that are correctly classified by our proposed detection algorithm.
These individual flows have different numbers of time windows with a maximum of 17
windows. The analysis shows that the algorithm have missed to detect only 69 flows at
the first window. In other words, 99.88% of all individual flows are detected at the first
window.

In order to perform a better performance evaluation of the proposed algorithm, we
have compared its accuracy on three datasets separately to the state-of-the-art systems
developed for botnet detection. However it is not easy to conduct a fair comparison due
to the different network environments, bot binaries, and etc. [17]. The comparative re-
sults (see Table 3) show that the proposed method performs best on the ISOT dataset. In
addition, the proposed algorithm has performed better than most of the existing meth-
ods.

6 Conclusion

In this study, an evolutionary computation-based botnet detection system is proposed
to address the aforementioned issues raised by existing techniques. GE is employed
to generate a detection algorithm in a readable form to distinguish botnet traffic from
normal traffic. P2P-based botnets, which are the latest and the most challenging type of
botnets currently available, are focused in this study. To the best of our knowledge, it is
the first study that explores the use of GE for detecting botnet flows. The results show
that the proposed method has achieved a very high detection accuracy and performed
better than most of the detection methods. In addition, it has accurately detected 99.88%
of botnet traffics in their first window which proves the early detection capability of
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Table 3. Comparison results

Study Dataset C&C structures Accuracy (%)
Huseynov et al. [2] ISOT P2P 72.15
Nogueira et al. [6] Generated traces IRC, P2P, HTTP 87.56
Saad et al. [7] ISOT P2P 89.00
Huseynov et al. [2] ISOT P2P 89.85
Livadas et al. [9] Dartmouth trace [18] IRC 92.00
Narang et al. [3] ISOT & Generated trace P2P 92.55
Fedynyshyn et al. [10] Generated traces IRC, P2P, HTTP 92.90
Present study ISOT & CICIDS2017 P2P 92.92
Wang et al. [8] Generated traces IRC, P2P, HTTP 95.00
Present study CICIDS2017 P2P 95.09
Present study ISOT P2P 96.24
Kirubavathi and Anitha [4] Generated traces HTTP 99.02
Kirubavathi and Anitha [5] ISOT & Others* IRC, P2P, HTTP 99.14
* They merged 11 datasets including various types of bots like Skynet, Rbot and etc.

our approach. Therefore, we can easily conclude that grammatical evolution is very
promising and applicable for botnet detection.
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