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Abstract. With the integration of efficient computation and commu-
nication technologies into sensory devices, the Internet of Things (IoT)
applications have increased tremendously in recent decades. While these
applications provide numerous benefits to our daily lives, they also pose a
great potential risk in terms of security. One of the reasons for this is that
devices in IoT-based networks are highly resource constrained and inter-
connected over lossy links that can be exposed by attackers. The Routing
Protocol for Low-Power and Lossy Network (RPL) is the standard rout-
ing protocol for such lossy networks. Despite the efficient routing built by
RPL, this protocol is susceptible to insider attacks. Therefore, researchers
have been working on developing effective intrusion detection systems for
RPL-based IoT. However, most of these studies consume excessive re-
sources (e.g., energy, memory, communication, etc.) and do not consider
the constrained characteristics of the network. Hence, they might not be
suitable for some devices/networks. Therefore, in this study, we aim to
develop an intrusion detection system (IDS) that is both effective and
efficient in terms of the cost consumed by intrusion detection (ID) nodes.
For this multiple-objective problem, we investigate the use of evolution-
ary computation-based algorithms and show the performance of evolved
intrusion detection algorithms against various RPL-specific attacks.

Keywords: IoT · RPL attacks· intrusion detection· multi-objective optimiza-
tion· genetic programming.

1 Introduction

IoT, which enables a variety of devices to be connected to each other, is one of the
most breakthrough advancements in our era. A great deal of IoT applications
have found use in various domains including smart home, smart city, logistic
monitoring, e-health, and the like. That’s why the number of smart devices
enabling such IoT applications has long been increasing. The total installed base
of these devices is estimated to be 75 billion, a five-fold increase in ten years,
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and machine-to-machine (M2M) connections are estimated to constitute half of
global connections by 2030 [22,6].

Low Power and Lossy Networks (LLN) are a type of IoT that provide lossy
communication among IPv6-enabled resource-constrained devices. They are char-
acterized by their constrained communication with high packet loss, low through-
put, and limited frame size [1]. In a typical implementation of LLN, each of the
resource-constrained nodes can communicate with each other, but also connects
to a special node, called the LLN Border Router (LBR) in order to connect to the
Internet. In order to build routes among nodes in such a constrained network,
RPL was developed by IETF-ROLL in 2012 [1], and is adopted as a standard
routing protocol for LLNs today.

Although RPL is good at building efficient routes between nodes in an LLN, it
is still very susceptible to attacks, especially insider attacks. The results of such
attacks can be vital considering the applications of LLNs in critical systems
such as healthcare, smart home. Therefore, researchers have been working on
developing effective intrusion detection systems for RPL-based IoT. However,
most studies in the literature mainly focus on detecting attacks against RPL and
overlook the suitability of developed IDS to such low-power and lossy networks.
Therefore, the main aim of this study is to explore on developing intrusion
detection systems that show both high accuracy and low cost.

Here, a distributed intrusion detection architecture in which a global ID node
is placed at the root node and some other nodes participate in intrusion detec-
tion by sending their local information to the root node is explored. Although
involving the monitoring nodes brings about an additional burden to the network
and devices, they enable the global ID node to capture intrusions on a global
scale, hence more effectively. Here, the size of the information collected and sent
by the monitoring nodes becomes important in terms of resource consumption.
In addition to increasing communication cost, large packets sent by monitoring
nodes might also lead to fragmentation. Therefore, in this study, while develop-
ing intrusion detection systems, beside their accuracy, the information used and
sent by the monitoring nodes is taken into account. For simplicity, this infor-
mation regarding the cost of intrusion detection and communication is taken as
the number of features used for training in this study. Therefore, the detection
accuracy and the number of features extracted from both the ID node and the
monitoring nodes must be tuned simultaneously to generate an effective and
efficient IDS, which is the main motivation of this study.

In order to solve this multi-objective optimization problem, we employ ge-
netic programming (GP) due to its ability to explore search space efficiently
for complex environments such as LLNs and to also handle multiple objectives
(i.e., accuracy and the number of features in this study) simultaneously. The
main objective of GP is to evolve a detection program (or model) that finds
a good trade-off between accuracy and the minimum number of features used.
Only the evolved features are extracted and sent by the monitoring ID nodes
to the central ID node, which then periodically runs the evolved program. To
handle multiple objectives by GP, we employ Non-dominated Sorting Genetic



Evolving Intrusion Detection System for RPL 3

Algorithm II (NSGA-II) [8], one of the most popular Pareto-based evolutionary
multi-objective algorithms. The following four attacks are covered in this study:
worst parent, hello flood, increased version, and decreased rank attacks. Vari-
ous network scenarios with these four attacks in which attackers are placed in
different locations are evaluated and discussed. The experimental results show
that the increase in the number of nodes and the number of data packets used
in intrusion detection also increases the number of features used as expected,
resulting in an increase in power consumption and a decrease in network per-
formance. For WP, HF, and IV type attacks, GP can produce a satisfactory ID
program with an average detection accuracy of 94%. On the other hand, limiting
the number of features has an adverse impact on the detection of DR.

The paper is organized as follows. The background information on RPL and
insider attacks against RPL as well as the methods used in this study, namely
GP and NSGA-II are given in Section 2. The related studies in the field of
intrusion detection in RPL are given in Section 3. The proposed approach is
given in detail in Section 4. The experimental settings and results are provided
in Section 5. The strengths, limitations, and possible future directions of this
study are discussed in Section 6. Finally, Section 7 concludes this study.

2 Backround

This section gives background information on both RPL, specific attacks against
RPL and the methods used for detecting these attacks, namely evolutionary
computation techniques.

2.1 RPL

RPL is a distance vector and source routing protocol and becomes standard for
low-power and lossy networks [13]. RPL aims to create Destination Oriented
Directed Acyclic Graphs (DODAG). A gateway node, known as the root node,
is responsible for the formation of DODAG by broadcasting control messages in
RPL called the DODAG Information Object (DIO). DIO messages are initially
transmitted only by the root node to construct an upward route from the sensor
nodes to itself. Nodes receiving multiple DIO packets from their neighbors select
the most suitable candidate parent nodes considering the rank values in the DIO
packets, determine their rank, and transmit the modified DIO packet. The Des-
tination Advertisement Object (DAO) packets, however, are used to construct
downward routes. The DAO packet is unicast by all nodes to their selected par-
ents. The downward routes in DODAG are operated in two modes: storing mode
and non-storing mode. In the non-storing mode, only the root node keeps the
routing table, and hence the nodes rely on only the root node for forwarding
their packets to the destination nodes. In the storing mode, a routing table is
kept by each node in the network; and instead of sending every incoming packets
to the root node, the nodes forward them to the next hop that is on the route
to the destination address. Another control packet, called DODAG Information
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Solicitation (DIS), is broadcast by a new node to join DODAG. Upon receiving
the DIS packet, a node returns with a DIO packet, thus sharing the DODAG
configuration that is necessary for the requesting node. The objective function
such as hop count specifies how a node computes its rank value that is used in
parent selection. Although there are many OF types in the literature, Objective
Function Zero (OF0) and Minimum Rank with Hysteresis Objective Function
(MRHOF) are proposed as the default OF for RPL-based networks [9].

RPL Attacks: Although RPL has some security mechanisms specified in its
RFC [1], it is susceptible to insider attacks. Attacks against RPL are classified
according to what they primarily target in the literature [16]:

– Attacks targeting resources: Attackers aim to make legitimate nodes
exhaust their resources by forcing them to perform unnecessary processing,
causing also the available links to be down.

– Attacks targeting topology: Attackers dramatically affect the construc-
tion of the RPL topology in a non-optimal way or lead to the isolation of
some nodes from the topology.

– Attacks targeting traffic: Attackers interfere with network traffic and try
to change the traffic pattern.

This study focuses on the following attacks targeting resources and topology:

– Decreased Rank (DR): In this type of attack, the attacker node illegitimately
advertises a lower rank value to other nodes in the network. As a result,
benign nodes inevitably send their packet through the attacker node. Conse-
quently, the entire network traffic may be controlled by this malicious node.
This attack is considered a first step for the forthcoming attacks, increasing
the severity of the attackers.

– Increased Version (IV): The version number is necessary for the global re-
pair in RPL. It is propagated in DIO packets throughout the network and is
increased only by the root node. In this type of attack, the attacker node il-
legitimately increases the value of the version field, resulting in unnecessarily
rebuilding the networks.

– Hello Flood (HF): The main purpose here is to unnecessarily increase the
size of network traffic by generating a large number of DIS packets, leading
to a dramatic consumption of the network’s resources.

– Worst Parent (WP): In this attack, the attacker node intentionally selects its
worst parent to route incoming packets to degrade the routing performance
of the network. The consequence of this attack is unoptimized routes between
the nodes, which reduces the performance of the network.

2.2 Evolutionary Computation

Evolutionary computation is inspired by natural evolution and has been shown to
be very effective in solving many problems in different domains, including intru-
sion detection [24][21]. Due to being very good at discovering complex character-
istics of a system and being able to solve multi-objective optimization problems,
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it is explored in this study. While there are many evolutionary computation
techniques in the literature, GP which represents candidate individuals as trees
is used here. In the following, GP and one of the multi-objective evolutionary
algorithms, namely NSGA-II, are introduced in detail.

Genetic Programming: GP [14] is one of the most popular evolutionary-based
computation techniques that is inspired by the ‘survival of the fittest’ theory [11].
Because GP is a very simple yet effective learning approach, it has been used to
solve a wide range of real-world problems in many research domains.

As a population-based learning algorithm, GP aims to find possibly the best
solution across generations. A number of agents, called individuals, participate in
the population, and each of them represents a candidate solution to the problem.
Individuals are encoded with a tree structure, called GP tree, where terminal
and non-terminal types of node take part. The terminals and non-terminals form
the leaf and intermediate nodes of the GP tree, respectively.

Evolution in GP starts with an individual set that is initially generated ran-
domly. The individuals are then evaluated and assigned a fitness value that
indicates how well this candidate solution can solve the targeted problem. After-
ward, individuals undergo three genetic operators in each generation that include
selection, crossover, and mutation to breed their offspring. In selection, a pair of
individuals is selected, and the fitness value of an individual plays a key role here
to determine if it is reproduced in the next generation. The selection is made
based on the selection operators such as tournament selection where a number
of individuals is picked randomly first, then the fittest individual is selected from
that subpopulation. They produce two new offspring individuals in crossover by
replacing the subtrees rooted at the crossover point randomly determined. In
mutation, however, subtrees of the offspring individuals are also replaced by,
contrary to crossover, randomly generated new subtrees. Hence, better individ-
uals are aimed to be evolved through generations. GP reaches the end of the
generation once the termination condition is satisfied. There may be different
conditions such as reaching the total number of generations, approximating well
to the ideal or optimum solutions, and the like. The general steps of the GP
algorithm are given in Algorithm 1.

Algorithm 1: Basic steps of GP.
1 Initialize population;
2 repeat
3 Calculate the individuals’ fitness;
4 Sort and rank populations by fitness value;
5 Reproduce/Regenerate the new population using GP operators (mutation,

crossover etc.);
6 until a termination criterion is satisfied ;
7 return best-of-run individual
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Multi-objective Optimization: Multi-objective optimization is a task that
aims to solve problems that involve two or more conflicting objectives. Most of
the problems in real life today fall into this category. Until now, a great deal of
effort has been put into developing evolutionary-based heuristic approaches that
effectively solve such problems. Among them, the Pareto-based approaches are
the most popular, and the majority of studies adopt the Pareto strategy where
a set of solutions is achieved (called non-dominated solution or Pareto optimal
solution) rather than a single solution. In the Pareto-based approaches, a solution
x is said to be better than another solution y provided that x ‘dominates’ y for
every objective. So, the main goal of the Pareto-based approaches is to have a
set of solutions, called a Pareto optimal set, that is not dominated at the end of
the optimization process. The set of objective values corresponding to the Pareto
optimal set is called the Pareto front.

As being one of the most popular evolutionary-based approaches targeting
multi-objective problems, NSGA-II [8] relies on Pareto domination of solutions in
the objective space. Here, the candidate solutions from the previous and current
population are split into several fronts according to their Pareto dominance and
crowding distances, and the solutions that belong to better fronts are allowed
to survive to the next generations. By doing so, the non-dominated solutions
survived at the best front are obtained for the problem. In this study, we adopt
the selection and survival strategies of NSGA-II to handle multiple objectives.

3 Related Work

A considerable attention has been paid since the birth of the RPL protocol. These
attempts are categorized mainly as studies that i) analyze the vulnerabilities of
the RPL protocol under attack and ii) develop solutions to secure the protocol
against different types of attacks. These studies are briefly discussed here.

In [2], the performance of RPL is investigated against version number attack
with one to three attackers. It is shown that the number of attackers have a
clear impact on packet delivery ratio. However, if the attacker is positioned
closer to the root node, it increases end-to-end delay and power consumption.
A comprehensive analysis is given in [9] to reveal how the performance of the
RPL changes as a function of different objective functions when the network is
subject to routing attacks with a varying number of attackers. It is shown that
RPL is more vulnerable to these attacks when MRHOF is adopted.

A number of solutions have been proposed in the literature to secure RPL-
based networks. For this purpose, the researchers have not only modified the
protocol, but also developed IDSs that are integrated into the network. The first
proposed IDS for RPL is SVELTE [20] which uses anomaly- and signature-based
detection methods. Another anomaly-based study based on a game-theoretic
model is proposed in [12]. It relies on two parts: i) a stochastic game for detec-
tion and ii) an evolutionary game for confirmation. The stochastic game model
calculates the standard RPL rules as a zero-sum game, and the proposed scheme
confirms the accuracy of the detection by applying evolutionary methods. In [18],
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a trust-based model is proposed for the detection of rank and black hole attacks.
Here, trust- and mobility-based metrics are evaluated. The proposed model has
two parts: i)trust formation including trust metrics, trust index computation,
trust rating, and ii)attack detection, including isolation of malicious nodes. Here,
a fuzzy threshold-based system is used to calculate the trust formation and at-
tack detection metrics. Rank values are checked with the sequence value of DIO
messages for detection of rank attacks, the trust index value of the preferred
parent is checked whether it is lower than threshold value for the detection of
black hole attacks. The trustworthiness of the nodes is considered for the selec-
tion of parent nodes. In [17], a solution is proposed not only to detect the version
number attack, but also to locate the attacker nodes. Here, monitoring nodes
periodically send the collected feature data towards the root, which then detects
attacks and locates the attacker by inspecting incoming data.

Recently, machine learning-based IDS has also been proposed for intrusion
detection in RPL. A multi-class classification based detection model is proposed
in [27] against rank and wormhole attacks. Here, the light gradient boosting
machine algorithm with one-sided sampling method is used in attack detection.
In another ML-based IDS, a deep neural network approach is used in [25] to
detect decreased rank, hello flooding, and version number attacks. Moreover,
they introduce a dataset called IRAD. Another deep learning-based model is
developed for the detection of hello flooding attack in [4]. Here, Gated Recur-
rent Unit (GRU)-based deep learning method with a Recurrent Neural Network
(RNN) approach is used for classifying the nodes. Another neural network-based
system is proposed in [15] to identify the normal behavior of the nodes. A re-
cent neural network-based IDS is proposed in [5]. Contrary to other studies,
they consider not only the routing layer, but also the link layer to extract fea-
tures that are fed to the network to learn a model. The involvement of features
related to the link layer has been reported to decrease the false positive rate.
The use of evolutionary-based algorithms for the generation of the IDS model is
investigated in [3].

Transfer learning-based approaches have also been proposed for intrusion de-
tection in IoT. A deep transfer learning (DTL) approach called MultiMaximum
Mean Discrepancy AE (MMD-AE), based on AutoEncoder (AE) and allows the
transfer knowledge is proposed in [23]. Here, although no IoT protocol is tar-
geted, general attacks such as TCP/UDP flooding attacks are targeted, and a
labeled dataset is transferred to an unlabeled dataset in accordance with the
proposed model. The results show that the proposed transfer learning approach
has better experimental results (Area Under Curve (AUC) score) than the tra-
ditional approach. In [26], the knowledge is transferred to detect new types of
attack and to evolve intrusion detection algorithms for new types of devices with
different constraints. Here, while the energy usage of the devices is minimized,
the detection accuracy is maximized.

While there are a few studies based on evolutionary computation in the liter-
ature [3][26], the current study differs from those by exploring different trade-offs
between the intrusion detection accuracy and the cost of the evolved algorithm
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in terms of energy consumption and communication cost. Therefore, a differ-
ent intrusion detection architecture is explored here, and communication cost is
taken into account for the first time.

4 Evolving Intrusion Detection Algorithms

The main aim of this study is developing a suitable IDS for RPL-based IoT
networks. Therefore, a central ID node is placed at the root node, which runs the
evolved intrusion detection algorithm. In order to analyze the network traffic far
from the central ID node, some monitoring nodes in which periodically collect
the local data in their neighbourhood and sent it to the central ID node are
participated in intrusion detection. Although these monitoring nodes enable the
central ID node to detect attacks with a more satisfactory performance, it can
have an adverse impact on the average lifetime of the network due to collecting
their local information and on the communication cost due to their sending
such information regularly to the central node. Therefore, the trade-offs between
detection accuracy and cost need to be investigated. Hence, this study aims
to evolve a lightweight ID model in terms of communication cost and energy
consumption while effectively detecting malicious network traffic.

An ID program essentially contains a conditional statement represented by
a GP tree. As stated earlier, there are terminal and non-terminal nodes in a
GP tree. The terminal nodes are leaf nodes in the GP tree that represent the
features collected by the nodes that are extracted from the RPL control and
data packets in a flow. In this study, we used 35 different features that were
proposed in [26]. Traffic flows are used for the construction of these features. To
do that, the flows are first windowed within the specific time intervals by both
the root and the monitoring nodes. The optimum interval time of the window is
found to be 60 s in this study. The windowed feature data is then collected by
the monitoring nodes and aggregated at the root node and provided to the GP
tree as input data. In addition to the RPL-related features, randomly generated
numbers are also assigned to leaf nodes to enable a more effective search by
GP individuals. The non-terminal nodes represent arithmetic, comparison, and
logical operators in the evolved model. It is worth stating that the root node in
the GP tree is constrained to be either a comparison or a logical operator, so that
it returns a Boolean value. An example of a GP tree that represents a candidate
ID program is given in Fig. 1, and the program corresponding to this tree is
given thereafter. The number of features employed in the ID model is of very
high importance in determining to what extent the model leads to additional
cost in terms of the memory and energy consumption of the monitoring nodes
and communication load in the network. Moreover, the high number of features
might result in fragmentation and the increase in the number of packets. As
shown in the results of the preliminary experiment given in Figure 2, the overall
power consumption of the nodes increases linearly with increasing data packets.
Therefore, in addition to the detection accuracy, the number of distinct features
employed in the intrusion detection algorithm is taken as the second objective
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COUNT_DIO MAX_RPL_INS

COUNT_DIS

Fig. 1. An example GP tree.

1 if ((COUNT_DIO + MAX_RPL_INS) >= COUNT_DIS) then
2 alert(intrusion)
3 end

which needs to be optimized simultaneously in order to ensure an efficient and
high-performance ID model. The GP algorithm is used to learn an ID model
(program) that is optimal with respect to these objectives. Hence, the GP tree
corresponds to the detection algorithm. While detection accuracy is measured
by running the evolved program in the network with and without attackers, the
number of features is measured just after the candidate GP tree is constructed
by counting the distinct features in the leaf nodes. In order to optimize these
objectives simultaneously, the selection and survival strategies of NSGA-II [8]
are integrated into the GP algorithm. Therefore, the set of Pareto dominant
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individuals found after each evolution step is taken into account to determine
both the survival of the parent individuals and the breeding of new offspring
for the next steps. In GP, each individual represents a candidate program that
is evaluated according to Pareto dominance. The GP individuals that dominate
others (i.e., give higher accuracy with fewer distinct features) are called Pareto
dominant ID programs, which we aim to learn in this study.

In this study, ECJ [10], a Java-based evolutionary computation toolkit, is
used for the implementation of the GP and NSGA-II algorithms. The GP pro-
gram is terminated at the 1000th generation. In order to point an ideal value for
the number of generations, we have performed pre-experiments and found that
the change in the performance of GP is not significant after the 1000th genera-
tion. The parameter settings of GP are listed in Table 1, and the other settings
not listed in the table are the default parameters of the ECJ.

5 Experimental Results

An overview of the simulation environment is given in this section in detail. In
addition, the experimental results obtained from the standalone and collabora-
tive IDS architectures are also discussed comparatively thereafter.

5.1 Simulation Environment

In the experiment, a grid topology, shown in Figure 3, is used with 30 nodes,
including the root node. Among them, three nodes (10% of the nodes) are set
as attacker nodes, where their positions are randomly chosen. The nodes in the
topology are positioned in the network such that each node is 20 m away from
another node, and the transmission range between the nodes is limited to 25
m so that the nodes can communicate with their neighbor nodes. The arrows
in Figure 3 represent the preferred parent of the child nodes in DODAG in a
benign environment. The Cooja simulator [19] that emulates the LLN nodes is
used in the experiments. Supported by Cooja for the emulated nodes, the Contiki
operating system [7] (version 2.7) that also involves the implementation of RPL
is used. Zolertia Z1 platform is chosen as the mote type for the nodes.

Table 1. GP parameters and their values.

Parameters Value

Non-terminals
+, -, *, /, sin, cos, log, ln, sqrt, abs, exp, ceil,
floor, max, min, pow, mod, <, ≤, >, ≥, ==,
! =, and, or

Terminals features in [26] and rnd(0,1)
Generation Size 1000
Population Size 100
Crossover and mutation probability 0.9 and 0.1
Max. depth of GP tree 20
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Fig. 3. Simulation network

By adopting this experimental environment and the settings, we have thor-
oughly evaluated the performance of the proposed evolutionary-based IDS against
four targeted routing attacks; WP, HF, IV, and DR. To do that, eight different
scenarios are generated, and the learning is repeated 10 times for each sce-
nario that is individually simulated for three hours. The main motivation of
the scenario-based evaluation is to thoroughly discuss how well the evolved ID
program can detect when monitoring or attacker nodes are re-positioned after
the learning step. Therefore, these scenarios differ from each other in terms of
the position of the monitoring and attacker nodes in the training and testing
network environment. These scenarios are outlined in Table 2. It is seen from
the table that the monitoring nodes in the network are grouped according to
their proximity to the root node that is represented with blue in Figure 3. The
monitoring nodes are either placed closely to the root node (1-3 hops away from
the root node, represented with yellow in Figure 3) or far (4-6 hops away, repre-
sented with purple in Figure 3) from the root node. It is worth pointing out here
that each of the monitoring nodes is randomly chosen from a different hop level
(that is, a single monitoring node is chosen per hop and the average of these
nodes’ data is used in the experiments). Hence, in each scenario 10% the nodes
are responsible for monitoring. In addition, in order to see the effect of attackers’
positions, in some scenarios, the attackers are placed randomly, but differently
from its corresponding training setting.

5.2 Results

In order to evaluate the performance of the proposed IDS, we have considered the
Pareto front set that represents the objectives of the Pareto dominant individuals
found for each simulated scenario. Because we have run the GP algorithm 10
times for each scenario, we have aggregated 10 Pareto front sets and extracted the
extreme points from these sets to reveal how well the GP algorithm could achieve
the best performance in terms of accuracy (ACCR) and number of features
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Table 2. Position settings of the monitoring ID nodes and the attacker nodes used in
the experiments.

Scenario Location of monitoring ID nodes Location of attackers
In training In testing in training and testing

S1 close close same
S2 close close different
S3 far far same
S4 far far different
S5 close far same
S6 close far different
S7 far close same
S8 far close different

(NoF). These extreme points are shown in Table 3 separately for each of the
two objectives. For example, ‘0.945 (8)’ stated for the ACCR implies that the
GP could reach 0.945 accuracy with a model that has eight distinct features.
Similarly, ‘1 (0.850)’ stated for NoF implies that the GP model has only one
distinct feature and could reach 0.850 accuracy.

The results enable us to evaluate the performance of the proposed IDS from
different points of view. The first is that DR is a harder-to-detect routing attack
as compared to other attacks when considering the average of the accuracies
from eight scenarios (it is 0.88 overall). The difference in the average accuracy
performances obtained from the other attacks is not significant, and GP succeeds
to evolve a satisfactory ID program for these attacks (it is 0.94 overall). As for

Table 3. The best performances with respect to accuracy (ACCR) and number of
features (NoF) obtained in the Pareto front set.

Scenario Objective WP HF IV DR

S1 ACCR 0.945 (8) 0.950 (13) 0.955 (12) 0.880 (11)
NoF 1 (0.850) 1 (0.865) 1 (0.870) 1 (0.810)

S2 ACCR 0.940 (7) 0.945 (12) 0.950 (12) 0.870 (10)
NoF 1 (0.840) 1 (0.855) 1 (0.870) 1 (0.800)

S3 ACCR 0.950 (11) 0.945 (10) 0.935 (8) 0.870 (10)
NoF 1 (0.845) 1 (0.860) 1 (0.860) 1 (0.820)

S4 ACCR 0.940 (8) 0.940 (9) 0.925 (6) 0.865 (8)
NoF 1 (0.840) 1 (0.855) 1 (0.850) 1 (0.820)

S5 ACCR 0.935 (8) 0.930 (9) 0.940 (10) 0.880 (11)
NoF 1 (0.835) 1 (0.845) 1 (0.830) 1 (0.835)

S6 ACCR 0.935 (12) 0.925 (11) 0.945 (12) 0.875 (10)
NoF 1 (0.830) 1 (0.840) 1 (0.825) 1 (0.810)

S7 ACCR 0.930 (9) 0.925 (12) 0.935 (10) 0.900 (12)
NoF 1 (0.835) 1 (0.830) 1 (0.835) 1 (0.800)

S8 ACCR 0.925 (8) 0.920 (7) 0.910 (9) 0.890 (12)
NoF 1 (0.825) 1 (0.830) 1 (0.810) 1 (0.805)
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the evaluation according to the average of NoF, it is seen that the ID program
requires the more features for the DR attack (it is 10.5 in overall). This clearly
suggests that GP is unable to evolve an ID program that gives higher detection
accuracy even after a rigorous evaluation of massive feature data. Furthermore,
the difference in the accuracy performances obtained from the extreme points
with respect to ACCR and NoF ranges from 4.5% to 12.0%. They are the WP and
DR attacks that give the highest and least difference in performance, respectively.
This shows that limiting the number of features in ID program has an adverse
impact on the detection capability to some degree as expected, and this varies
according to the targeted attack. Note that these give the largest difference in
the performances of GP, and even a few increases in the number of features in
ID program yield much better accuracy.

When it comes to the change in IDS performance when only attackers are
repositioned with the same configurations of the monitoring nodes (that is, the
comparison of S1 with S2, S3 with S4, and so forth), a slight performance degra-
dation is often observed, and the change here is no more than 2.5%. This is
not surprising because the locations of attackers are positioned randomly from
the entire network, and there are cases studied in these scenarios where the ID
program evolved and tested when the attacker nodes are, respectively, in the
vicinity and away from the monitoring or root node. As for the change in IDS
performance as a function of different configurations of monitoring nodes by
keeping the attacker’s positions the same and different (that is, comparison of
S1 with S3 and S2 with S4), it is seen that the performance of the evolved ID
program slightly improves (up to 2.5%) when monitoring nodes are positioned
within the first three hops.

In order to reveal how monitoring nodes are helpful in improving the attack
detection capability of the ID program, we replicated the simulations by adopting
standalone architecture where the root node is in charge of intrusion detection
alone. The simulation here is run with two attacker configurations that are de-
noted ‘same’ and ‘different’ which again represent the cases where attackers are
positioned at the same and different locations when ID program is evaluated in
the testing environment, respectively. The results are shown in Table 4. Note
that S1 through S4 in Table 3 should only be considered to ensure a fair com-
parison between the performances of collaborative and standalone architectures.
The results suggest that the performance of the ID program increases with the
collaborative architecture, and the difference reaches 4%. However, no significant
difference is observed in terms of NoF.

6 Strengths, Limitations, and Future Directions

The primary target of our attempt is to reduce the operational cost of IDS con-
sidering the constrained resource of LLN nodes. Therefore, without sacrificing
detection accuracy, we aim to minimize the number of distinct features that
cause exhaustive resource consumption of nodes, as well as adversely affect the
communication cost of monitoring nodes. The obtained results show the appli-
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Table 4. The extreme points with respect to ACCR and NoF in the Pareto front sets
obtained by the standalone architecture.

Position Objective WP HF IV DR

Same ACCR 0.910 (9) 0.920 (12) 0.935 (11) 0.865 (10)
NoF 1 (0.835) 1 (0.840) 1 (0.830) 1 (0.790)

Different ACCR 0.905 (8) 0.915 (11) 0.925 (12) 0.860 (9)
NoF 1 (0.825) 1 (0.830) 1 (0.825) 1 (0.780)

cability of the proposed multi-objective approach to effectively and efficiently
detect intrusions in LLNs. Because the depth of GP tree is highly correlated to
the number of terminal nodes (i.e., feature nodes) in most cases, we implicitly
control the size of the tree, and hence the length of the program. Therefore, the
code bloating problem in GP is handled in our approach. However, even few, the
LLN nodes also suffer from the frequency of the operations in the ID program
that are to be executed. Although this execution cost is not included as an indi-
vidual objective, it can be easily minimized by penalizing solutions that require
intensive computation.

The existence of monitoring nodes may reduce the communication perfor-
mance of LLNs, but they are undeniably important in detecting intruders ef-
fectively. We here perform the simulations by grouping the monitoring nodes as
close (1-3 hops away from the root node) and far nodes (4-6 hops away from the
node); however, it is of high importance to thoroughly investigate the number
and the position of these nodes, which could also be studied in the future. In
addition, the proposed approach is tested on a centralized architecture in which
the root node is responsible for raising the alarm. That’s why, the single point
of failure, which occurs when the root node is down by the intruders, is the
drawback of our detection system. To overcome this, one can rely on a fully
decentralized architecture where multiple nodes are in charge of the detection
task simultaneously. For this architecture, developing different local detection
programs for each individual node is a must. To do that, it is worth studying the
federated learning approach to have local programs that are informed globally
and constructed collaboratively.

As the main objective of this study is to show applicability of multi-objective
GP in developing IDS for resource-constrained LLNs, we only targeted four at-
tack types, and it can be extended by involving other types of attacks. In addi-
tion, the positions of the LLN nodes are stationary in the experiment; however,
if not all, in most real-world IoT applications, a portion of these nodes is mobile.
Therefore, it is worth testing our proposed approach in a mobile environment,
which could be another future direction of this study.

7 Conclusion

In this study, we explore the use of the Pareto-based multi-objective approach
to efficiently and effectively detect four different attack types specific to RPL.
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To the best of the author’s knowledge, this is the first study that aims to si-
multaneously optimize the detection accuracy of ID programs and their costs
including communication cost of ID nodes. To do that, a massive number of
simulations are generated, and the different ID programs are evolved by using
these simulations. The evaluations are made on the basis of Pareto sets obtained
from the evolved programs. Among all experiments, the average accuracy was
92.2%, while the variance in these accuracies was 0.08%, demonstrating that the
proposed approach provides satisfactory results in detecting targeted attacks. It
is also worth stating here that our IDS model converges to an accuracy level
above 90% after reaching around 30% of the generations. In the future, we plan
to explore the applicability of our approach when a portion of LLN nodes are
mobile.
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