
GenTrust : A Genetic Trust Management Model for

Peer-To-Peer Systems

Ugur Eray Tahtaa,b, Sevil Sena,∗, Ahmet Burak Cana

aDepartment of Computer Engineering, Hacettepe University, 06800 Ankara/Turkey
bASELSAN, 06370 Ankara/Turkey

Abstract

In recent years, peer-to-peer systems have attracted significant interest by
offering diverse and easily accessible sharing environments to users. However
this flexibility of P2P systems introduces security vulnerabilities. Peers often
interact with unknown or unfamiliar peers and become vulnerable to a wide
variety of attacks. Therefore, having a robust trust management model is
critical for such open environments in order to exclude unreliable peers from
the system. In this study, a new trust model for peer-to-peer networks called
GenTrust is proposed. GenTrust has evolved by using genetic programming.
In this model, a peer calculates the trustworthiness of another peer based
on the features extracted from past interactions and the recommendations.
Since the proposed model does not rely on any central authority or global
trust values, it suits the decentralized nature of P2P networks. Moreover,
the experimental results show that the model is very effective against various
attackers, namely individual, collaborative, and pseudospoofing attackers.
An analysis on features is also carried out in order to explore their effects
on the results. This is the first study which investigates the use of genetic
programming on trust management.

∗Corresponding author
Email addresses: uetahta@aselsan.com.tr (Ugur Eray Tahta),

ssen@cs.hacettepe.edu.tr (Sevil Sen), abc@cs.hacettepe.edu.tr (Ahmet Burak
Can)

This paper is an extended, improved version of the paper ”Evolving a Trust Model for
Peer-To-Peer Networks Using Genetic Programming” presented at EvoComNet2014 and
published in: Applications of Evolutionary Computing, Proceedings of 17th European
Conference, EvoApplications 2014, Granada, Spain, April 23-25, 2014, LNCS YYYY (to
appear soon), Springer, 2014.

Preprint submitted to Applied Soft Computing November 30, 2014

Keywords: Evolutionary computation, Genetic programming, Trust
models, Reputation, Peer-to-peer systems

1. Introduction

Open nature of peer-to-peer (P2P) systems facilitates join or leave of
users to the network without worrying about any obligations. However this
freedom creates potential threats for good behaving peers. Since there is
no central authority to manage inter-peer interactions, malicious peers can
easily perform attacks or take advantage of system resources without con-
tributing to the system. A way to mitigate such threats is to create artificial
trust relationships among users based on peer interactions. Trust models can
help in such open environments to quantify trustworthiness numerically and
create trust relationships among peers. However, it is hard to measure and
formulate trust with numeric values. Furthermore, measuring trust with-
out a priori knowledge is a challenging problem in P2P systems since peers
mostly interact with unknown peers. Therefore, trust management in P2P
environments is a difficult research problem.

When there is a central authority, trust management is relatively easy
problem. In some e-commerce applications, a central authority collects user
inputs about completed interactions and this information is used to make
trust decisions about future interactions. Although fake users and inter-
actions can pollute the collected information, this model mostly works on
e-commerce applications. However, P2P systems need more complex trust
management models due to the lack of a central authority. Peers need to
store and manage trust information about each other [1, 2, 3]. On the other
hand, uncertain information collected from neighboring peers might be de-
ceptive. Malicious peers might deliberately provide wrong information to
the system and this might not be detected since there is no central authority.
Therefore, trust models in P2P systems should be able to recognize various
attacks and help benign peers to find trustworthy peers. While doing this
task, ambiguous information collected from other peers should be processed
carefully to make correct decisions.

The trust decision problem can be considered as a classification problem,
and machine learning techniques could be employed to distinguish malicious
peers from benign peers. This paper proposes a genetic programming (GP)
based trust management model (GenTrust), extending our previous work [4]

2

with greater experimental verification and analysis on features. The pro-
posed model helps to identify malicious peers and find trustworthy peers
using the features derived from peer interactions and recommendations. The
model has evolved with these features by using genetic programming, which
provides a mathematical function to measure trust values of peers. A peer
ranks its neighbors according to trust values, and makes trusting decisions
using these values. Each peer stores trust relationships for the peers they
have interacted in the past. As peers gain more neighbors with time, ma-
licious peers are excluded from the system using trust relationships. The
evolved model is evaluated against various attackers, namely individual at-
tackers, collaborators, and pseudospoofers. The results show that the model
decreases the number of attacks considerably. Features of the model are
also analyzed and their effects on the performance is assessed. Satisfaction
related features are found more influential in trust decisions. Cross train-
ing and testing are performed among various attacker types to understand
the model’s adaptability on different attacker behaviors. These experiments
show that the models trained on complex attack behaviors are also successful
in simple attack behaviors.

Organization of the paper is as follows. Section 2 gives a summary of
the state of the art research. Section 3 and 4 explain the proposed trust
model and the simulation environment respectively. Section 5 presents the
experiments and discusses their results extensively. Section 6 outlines the
conclusions of the study.

2. Related Work

Trust is a social concept and hard to measure and formalize with theo-
retical foundations. Although some approaches have formulated trust as a
result of direct experiences [5], most trust models use recommendations of
others to build trust relationships [6, 7, 8]. However, it might be hard to
correctly evaluate trustworthiness using recommendations, since recommen-
dations may contain deceptive or subjective opinions [9]. To better address
different aspects of the trust, some approaches use trust and distrust concepts
[10, 11], and some approaches formulate trust in different contexts [12, 13].

Although it is hard to quantify trust numerically, reputation systems pro-
vide a means to address trust concept. As in some e-commerce applications,
the users with higher reputation might be considered as more trustworthy.
However, ensuring honesty of feedbacks in reputation systems is still a prob-

3

lem [14, 15]. Dissemination of bogus feedbacks with multiple fake users
(sybil attacks [16]) should also be prevented. Otherwise, malicious users can
create many fake users and pollute reputation of others according to their
intention [17, 18]. Furthermore, users should also have long-lived identities
to build higher reputations [14]. Otherwise, it is hard to maintain reputa-
tion when users join and leave the system frequently [19]. If reputation and
trust concepts are modeled correctly, economic activity can be increased in
e-commerce applications since some activities may not happen without trust
[20].

Trust models have found many applications in P2P systems due to their
open and malicious nature [21, 22]. Since interactions mostly happen among
unfamiliar peers, a trust model can improve the success rate of interactions
and prevent some attacks [1, 2, 3]. Trust models on P2P systems are af-
fected by the structure of network. In the unstructured overlay networks like
Gnutella [23], trust information about other peers are obtained by flooding
trust queries to the network [2, 24, 25]. Generally, each peer stores trust infor-
mation about its neighbors. Trust queries enable to collect recommendations
about unfamiliar peers and make decisions about them. Some trust models
are designed based on structured P2P networks [1, 3, 26]. A distributed hash
table (DHT), such as Chord [27], is used to manage trust information. The
DHT algorithm determines which peer(s) will be in charge of storing the
trust information about a peer. This provides efficient access to the global
trust information without flooding queries to the whole network. However
anonymity of the trust holders are revealed in this approach. Some models
proposed cryptographic protocols to provide anonymity for trust holders [28].

Most trust models on P2P systems are generally based on probabilistic
and statistical methods. Aberer and Despotovic [1] assume that number of
complaints can be a measure of trustworthiness. Some approaches apply ba-
sic majority voting and averaging principles on the information collected from
past experiences and recommendations, such as in XRep [29] or P2PRep [30].
EigenTrust model[3] uses transitivity of trust to calculate indirect trust rela-
tions. PeerTrust [26] uses transaction and community context parameters in
trust calculation so application dependent factors and whole system related
issues can be addressed better. Wang and Vassileva [31] use a Bayesian net-
work model to evaluate different aspects of interactions on a P2P file sharing
application. Selcuk et al. [24] use a vector-based trust metric and limited
flooding approach to evaluate trustworthiness. PowerTrust [32] utilizes a
random-walk strategy and power nodes in an overlay network to improve

4

global reputation accuracy. GossipTrust [25] defines a randomized gossip-
ing [33] protocol for efficient aggregation of trust values. Nguyen et al. [34]
propose a Bayesian model of trust and use different context of trust but do
not provide any experimental results. Conner et al. [35] proposes a method
for customized trust evaluations by using different scoring functions over the
same feedback data. Josang et al. [36] uses subjective logic to analyze trust
networks. M-Trust [37] utilizes confidence in reputation for a better trust
evaluation. Wu [38] proposes a trust model for predicting availability of
wireless links on mobile P2P networks. A stable group model is proposed to
address mobility issues and increase trust query success rate. Selvaraj and
Anand [39] propose credential trees for evaluating trust among peers. In this
model, peers use policies and credentials to make trust decisions. Anand and
Bhaskar [40] integrates a trust model with a security model to solve some se-
curity issues of P2P systems. The model increases controlled scalability and
availability of content in P2P systems. SORT [41] uses service and recom-
mendation contexts of trust to measure trustworthiness better in providing
services and recommendations.

Although most trust models use probabilistic and statistical methods,
there are some approaches using machine learning techniques to classify good
and malicious peers. Weihua Song et al. [42] use neural networks to derive
trust values in multi agent systems. Neural network approach helps to classify
recommendations as qualified or unqualified when choosing service providers.
Beverly and Afergan [43] use a support vector machine based approach to
select neighbors efficiently and then reduce the communication cost. Linear
discriminant analysis and decision trees are used by Liu et al. [44] to help
peers to build a knowledge base using past interaction history, which helps
to identify successful transactions. Some approaches use Hidden Markov
Models (HMM) in trust models [45, 46, 47] since HMM can be an effective
method to model behaviors of entities in a system efficiently.

The evolutionary computation techniques are mainly applied to intrusion
detection in the security domain [48][49]. Most of these studies focus on
developing effective and efficient detection methods. Moreover they usually
apply either genetic programming (GP) or genetic algorithms (GA). The first
GP application for intrusion detection was from by Crosbie and Stafford [50].
Since then, there are many useful applications in the field. In [51], Abraham
and Grosan compare the genetic programming technique with other machine
learning methods for intrusion detection [51], and show that genetic pro-
gramming techniques both outperform other techniques and are lightweight.

5

Another advantage of evolutionary computation is to generate readable, easy-
to-understand outputs for security experts [52]. The grammatical evolution
technique which produces readable grammars has been successfully employed
for intrusion detection on wired networks [53] and on ad hoc networks [54].
Creating a set of solutions providing different trade-offs between conflict ob-
jectives is another characteristic of EC that attract researchers to investigate
EC techniques on security. Sen and Clark [55] employed multi-objective evo-
lutionary computation (MOEC) techniques in order to show how energy us-
age and detection ability can be traded off for resource-constrained networks.
Moreover, there are recent studies which show the significant potential of evo-
lutionary computation techniques to explore the suitable intrusion detection
architecture, by taking into account the objectives of cooperative intrusion
detection programs [55, 56]. The MOEC techniques are also used to explore
how intrusion detection system sensors could be best placed on a network in
[57].

Although evolutionary computation techniques are increasingly used in
the intrusion detection domain, as far as we know there is only one applica-
tion of genetic algorithm in a trust model, which is proposed Selvaraj et al.
[58]. This model uses genetic algorithm to detect attackers in a P2P system.
Only features from local interaction data are used to make evaluations about
trustworthiness. The trust model is trained by using the profiles of benign
peers and, a profile base is created. If the behaviour of a peer deviates from
this profile base, it is detected as malicious peer. This anomaly-based ap-
proach also uses a trusted central authority. However, GenTrust does not
rely on a central authority. GenTrust uses features extracted both from
interactions and recommendations. Thus both data from the peer’s own ex-
perience and data collected from other peers are used. If a peer does not
have enough information about another peer, it could use recommendations
from its neighbor peers.The features and completely decentralized structure
of GenTrust provide a more suitable model for P2P systems.

3. The Model

Measuring trust without a priori knowledge is a challenging problem in
P2P systems since peers mostly interact with unknown peers. In this re-
search, GP is proposed to discover automatically complex properties of P2P
networks. GP is a common evolutionary computation technique introduced
by Koza [59]. Evolutionary computation (EC) is one of the most promising

6

approaches in intrusion detection. The following characteristics of evolu-
tionary computation attract researchers to investigate these techniques on
intrusion detection: generating more readable outputs by security experts,
ease of representation, producing lightweight solutions, using fewer features,
and creating a set of solutions providing different trade-offs between con-
flict objectives [49]. Furthermore, EC does not require assumptions about
the solution space [60]. Although EC techniques are increasingly applied to
the intrusion detection problem, there is no application of GP in generating
trust models. This is the first study that investigates the use of GP on trust
management models on P2P systems without a central authority.

In GP, an individual is represented with a GP tree, which is built of func-
tions (operators, program statements etc.) and terminals (features, constants
etc.). To find possible solutions to a problem, a group of individuals (pop-
ulations), candidate solutions for the problem, are generated by GP in each
generation. The first population is usually generated randomly. Subsequent
generations are evolved by applying genetic operators such as crossover, mu-
tation on individuals. Then, successful functions (individuals) are evolved
in new generations to produce better possible solutions. The best solution
to problem is sought by creating many generations. A fitness function is
used to determine how well individuals create a solution to the problem. If
the features and fitness functions are selected correctly, GP could produce
more successful results than other machine learning techniques and programs
written by people [61].

In this study, features extracted from past interactions and recommen-
dations are used to build GP trees of individuals. Each tree provides a
mathematical function to evaluate trust values. These functions are used
when making trust decisions among peers. The peers with the highest trust
values are selected for interactions in the network. The malicious peers which
have low trust values are excluded intrinsically.

3.1. Feature Sets And Operators

Success of GP and other machine learning techniques is highly correlated
to selecting the right feature set [62]. Selecting right features is a difficult
problem since it is hard to determine at the beginning which features affect
the result and help to distinguish various classes. As mentioned above, Gen-
Trust uses features extracted from past interactions and recommendations of
neighbors.

7

In GenTrust, an interaction is assumed to happen between two peers.
The participants of an interaction keep some information about the results
of the interaction. Any P2P application specific activity can be considered
as an interaction, such as file sharing, CPU sharing, and storage sharing.
In the simulations, a file sharing application is taken into account. Each
peer extracts features using the information about past interactions. These
features represent a peer’s direct experience about its neighbors. Interaction
based features are listed in Table 1.

Table 1: Feature Set of GenTrust
Interaction Based Features Recommendation Based Features

number of interactions (int) number of recommendations (rec)

number of successful interactions (sucInt) average of neighbors’

number of successful interactions (avgNeighbSucInt)

average size of downloaded files (avgFileSize) average of neighbors’ average

satisfaction values (avgNeighbSat)

average time difference between average of neighbors’ average

the last two interactions (avgTime) weight values (avgNeighbWeight)

average weight (avgWeight) average of trust values (avgNeighbTrust)

average satisfaction (avgSat)

Successful interactions are the interactions that the file download has fin-
ished successfully. Number of interactions and successful interactions provide
an information about how much the other peer is known. For example, hav-
ing only one interaction vs. having ten interactions do not represent equal
level of experience. Average size of downloaded files represent how much a
peer has contributed in each interaction. Average time difference between the
last two interactions represent how frequently the other peer is interacted.
Satisfaction and weight parameters are calculated as in [41]. Satisfaction
parameter represents how good is the other peer in an interaction. In the
simulations, it is assumed that peers make a bandwidth agreement before
an interaction. Additionally, peers might change online and offline periods.
Therefore, the satisfaction about an interaction is calculated based on aver-
age bandwidth, agreed bandwidth before the interaction, online, and offline
period values of the uploader:

Satisfaction =

{
(AveBw
AgrBw

+ OnP
OnP+OffP

)/2 if AveBw < AgrBw,

(1 + OnP
OnP+OffP

)/2 otherwise
(1)

If an uploader provides the agreed bandwidth and does not go offline

8

frequently, satisfaction value gets a value close to 1. Otherwise, it is assigned
to a lower value between 1 and 0.

Some interactions might be more important than other interactions. For
example, in a file download interaction, size of the file and popularity (num-
ber of uploaders) might affect the importance of a file. Weight parameter
addresses the importance of interactions in GenTrust. Weight parameter is
calculated based on the file size, the number of uploaders of the downloaded
file, and the number of uploaders of the most popular file:

Weight =

{
(size
100MB

+ #Uploaders
Uploadermax

)/2 if size < 100MB,

(1 + #Uploaders
Uploadermax

)/2 otherwise
(2)

If the size of a file is close to or larger than 100 MB and it is shared by many
uploaders, the file is assigned to a larger weight value (close to 1). Thus
downloading this file has more importance in trust calculations.

The second set of features are recommendation based features. When
a peer wants to interact with another peer, it queries its own neighbors
about their experiences, in other words recommendations. The neighbors
who have information about the queried peer send their recommendations.
A recommendation contains the following information: number of successful
interactions, average satisfaction of interactions, average weight of interac-
tions, and a calculated trust value of the queried peer. After a trust query is
sent to neighbors, total number of collected recommendations and average of
the values in collected recommendations are used as recommendation based
features. These features are listed in Table 1.

The operators used in Gentrust are listed in Table 2. At the end of
training step, a formula is generated for the trust calculation using these
operators and the features listed in Table 1.

3.2. Fitness Function

In evolutionary computation techniques, the fitness function is an im-
portant factor that affects classification performance. Success of a solution
generated by an individual is determined by the fitness function. GenTrust
uses the reduction in the number of attacks as the fitness function. To obtain
a base case for the number of attacks, each experiment is run without having
a trust model. This gives us an information about how many attacks occur
in the simulated environment when a trust model is not present. Then this
base is compared with the results obtained when a trust model exist. Let

9

Table 2: GP operators

Operator Symbol

summation +

subtraction -

division /

multiplication *

inverse 1/

log rlog

square root sqrt

square square

Rtrust be the number of attacks with a trust model and RnoTrust be the num-
ber of attacks without any trust model. Each interaction with a malicious
peer (downloading a malicious file, or receiving unfair recommendations from
the peer) represents an attack. In order to calculate the fitness function, the
simulation module is executed for each individual. The fitness function is
given below:

fitness = Rtrust/RnoTrust. (3)

Objective of the trust model is to decrease the value of fitness function. At
the end of the evolution, the individual that minimizes the fitness function
is selected as the solution. When an individual mitigates the number of
attacks, the value of the fitness function decreases and then the success of
the trust model increases. In other words, the individual resulting in the
smallest number of attacks in the network is chosen. If the fitness function
produces a value close to 1, this means that the model is not very effective
and its use does not provide a benefit to the whole system. However, this
does not mean that no peer is benefited from the model. Some peers might
have benefited besides the whole system lacks.

4. Experimental Settings

4.1. The Attacks

In this section, the attack models considered in the study are outlined.
Defining representative and realistic attack model is very important to eval-
uate a trust model successfully. The attacks covered here range from simple

10

attacks to hard attacks in terms of detection. Attacks taking advantage of
evasion strategies such as collaboration and pseudospoofing are also taken
into account in the model.

In a P2P network, benign peers always behave as expected and properly
carry out their tasks such as uploading authentic files, giving fair recommen-
dations about the peers it has interacted with, and other similar means. On
the other hand, a peer with a malicious intent could make severe damage
to the network. A malicious peer could perform malicious activities such as
uploading files with malicious content, giving biased recommendations about
other malicious/benign peers. The aim of an effective model is to prevent
malicious peers to participate in the network, hence to reduce the number
of malicious files and unfair recommendations. In order to train an effective
trust model and evaluate its performance, various attack scenarios are gen-
erated in this study. In the experiments, malicious peers are considered to
behave in two different ways: naive and hypocritical.

• Naive: The attacker always uploads virus infected/inauthentic files and
gives unfair recommendations to others [15].

• Hypocritical: The attacker performs attacks by uploading inauthentic
files or giving unfair recommendations with x% probability. Otherwise,
it acts like a good peer [3, 24].

In addition to individual attackers, collaborators and pseudospoofers are
also simulated in the experiments. Collaborators could behave naively or
hypocritically as individual attackers. While individual attackers carry out
their malicious activities on their own, collaborators perform attacks coop-
eratively. For example, they always uploads authentic files to each other
and give unreasonably high recommendations about each other in order to
protect his team friends from being identified. However collaborators may
naively or hypocritically upload virus infected/inauthentic files and give un-
fair recommendations to other good peers.

The attackers discussed so far do not change their identities. In this study,
another type of attack model, namely pseudospoofing, in which the attackers
change their pseudonym in order to evade being identified and remain active
in the system for a longer period of time are analyzed. These attackers are
shown to be the hardest to detect in the literature, due to periodical clearing
of their negative reputations [24][19]. Selcuk et al. [24] state that the only

11

way to exclude these attackers from the system is to build a sufficient level
of trust among good peers. In this study, both individual pseudospoofers
and collaborator pseudospoofers were analyzed. A pseudospoofer changes its
identity every 1000 cycles in the experiments.

4.2. The Simulation

The conceptual schema of the experiments is demonstrated in Figure 1.
First of all, the GP algorithm initializes a set of individuals randomly. Then
each individual, the candidate trust formula, is simulated on a P2P network
generated with a file sharing program in order to calculate the fitness func-
tion. The fitness value represents the number of malicious attacks reduced
with the presence of the evolved trust formula. Based on fitness values,
new individuals are created by applying genetic operators such as crossover
and mutation on the existing population. This constitutes one generation
of GP. The program is executed until the best individual is obtained or the
defined number of generations are reached. Since the former one is difficult
to obtain in a timely manner, the second termination criterion is mainly
employed in GP applications. Since P2P simulation is executed for each in-
dividual evolved in the population, one run takes a very long time for the
complex problem aiming to be solved in this research. Therefore the number
of generations is fixed to be able to have many runs.

Figure 1: Simplified Schema of Experiments

12

ECJ 21 toolkit [63] is employed for the GP implementation. In the ex-
periments, the population and generation sizes are chosen as 100 and 300
respectively. The other parameters employed are the default parameters of
the ECJ toolkit. The GP algorithm is run ten times, and the best individual
is selected among these runs. In the testing of the model, the best individual
is run 30 times on a network. For the training and testing, each network setup
(position of good and malicious peers, resources on a peer, peers requesting
file downloads, etc.) is created randomly. The final results are obtained from
these 30 runs. The general steps of the GP Module are listed in Algorithm
1.

Algorithm 1 The general steps of the GP algorithm
initialize a random population
while current generation <= maximum generation do

for all individuals in the current generation do
execute the file sharing simulation
evaluate the fitness function

end for
apply genetic operators (selection, crossover, mutation, etc.) to the individuals
create new population

end while

In order to implement the attacker models described above, a file sharing
simulation program is adapted from the file sharing simulator developed in
[41]. To make observations realistic, simulation parameters are configured
according to results of some empirical studies [64, 65]. The simulation pro-
gram is written in Java language. The GP module works in an integrated
manner with the simulation module. The file sharing program is executed
many times in order to simulate different types of attack models. Each run
takes 50000 cycles and one cycle represents 10 minutes running of a P2P net-
work. Each P2P network consists of 1000 peers. Based on the attack model,
some of the peers are randomly assigned to be good or malicious peers. Peers
simply implement the following activities: uploading files for sharing, inter-
acting with other peers to download files, and giving recommendations about
other peers when requested.

General flow of the file sharing simulation program is given in Algorithm
2. When the simulation is started, peers do not have any assumptions or
information about others. All peers are strangers to each other. When a peer
downloads a file from another peer, they become neighbors. Each interaction
is saved for future interactions. The trust values are continuously built based
on interactions they make with each other. When a file is requested, a list

13

of file providers (uploaders) is returned by the P2P network. The trust
values calculated by the GP model comes into the picture at this stage. The
peer chooses the uploader with the highest trust value among neighbors or
strangers offering the requested service. In the simulation model, a peer
always choose neighbors over strangers. If none of the neighbors has the
requested file, then a relationship is constructed with a stranger offering the
file. Based on the interaction history with neighbors and recommendations
collected from other peers, the peer chooses one of the providers to start
downloading.When a download finishes, the downloader assigns a satisfaction
value for the interaction and updates trust value of the uploader. If the
downloaded file is malicious or inauthentic, the uploader is put into the
blacklist and never be interacted again.

Algorithm 2 A high level algorithm on how simulation works.
1: Initialize peers and resources
2: while current cycle < maximum cycles do
3: for each peer in the network do
4: for each download of the peer do
5: Update the status of the download
6: if the download is completed then
7: Update the trust value of the file provider
8: end if
9: end for
10: if time to download a resource has come then
11: Select a resource and send a query to find file providers
12: Let U be a list of service providers
13: if the peer has neighbors then
14: if there are neighbors in U then
15: Sort peers in U based on trust values
16: Select the file provider with the highest trust value
17: else
18: for all peers in U do
19: Send a reputation query to the neighbors
20: Calculate a trust value
21: end for
22: Sort peers in U based on trust values
23: Select the service provider with the highest trust value
24: end if
25: else
26: Sort peers in U based on reported peer capabilities, e.g., bandwidth
27: Select the service provider with the highest capabilities
28: end if
29: end if
30: end for
31: end while

14

1500

2000

2500

3000

3500

4000

-b
a

se
d

 A
tt

a
ck

s

Malicious Individual Attackers

Naive - 10% Hypocritical - 10% Naive - 30% Hypocritical - 30%

0

500

1000

1500

0 10000 20000 30000 40000 50000

F
il

e
-

Cycles

Figure 2: File-based attacks over time in a network consisting of individual attackers

5. Experiments and Analysis

5.1. Analysis on Individual Attackers

First of all, a trust model is generated for individual attackers. In the
training, the generated individuals are simulated on a network in which 10%
of the peers is malicious. The GP algorithm is run ten times for each attack
type and the best results is evaluated in testing. Testing is done on networks
with different amounts of malicious peers (10%, 30% and 50%). In the ex-
periments, the attack probability of hypocritical attackers is set 20% for all
interactions.

Table 3 shows the success ratio of the evolved trust model against indi-
vidual attackers on different network setups. Here, malicious peers simply
implement file-based attacks in which the attacker uploads a file with ma-
licious content or an inauthentic file. Therefore, each network setup is exe-
cuted both with the evolved trust model or without the trust model. The
results represent the amount of attacks reduced with the evolved GP model
comparing to no trust model execution.

Table 3: Success ratio of the trust model against individual attackers for the file-based
attacks

10% 30% 50%

Naive 84.1 ± 0.6 77.3 ± 1.1 73.2 ± 0.8

Hypocritical 71.3 ± 1.2 58.3 ± 0.9 45.4 ± 1.3

The evolved model identifies naive attackers successfully. As expected,
the number of attacks is increased with the increase in the number of mali-

15

14000

Malicious Individual Attackers

Naive - 10% Hypocritical - 10% Naive - 30% Hypocritical - 30%

6000

8000

10000

12000

R
e

co
m

m
e

n
d

a
ti

o
n

-b
a

se
d

 A
tt

a
ck

s

0

2000

4000

0 10000 20000 30000 40000 50000

R
e

co
m

m
e

n
d

a
ti

o
n

Cycles

Figure 3: Recommendation-based attacks over time in a network consisting of individual
attackers

cious peers in the network. However the model reduces the number of attack
around 73% even in the case where half of the peers participated in the net-
work is malicious. This good success ratio is a result of that individual naive
attackers could easily be identified right after their first attack attempts.
Hence their damage to the network is prevented enormously by excluding
these peers from network activities immediately. The hypocritical individual
attackers are also detected successfully. However they are more affected with
the increase of malicious peers. The undetected or late detected attackers
could affect the trust decisions in a negative way.

Identifying attacks in a reasonable time is related with convergence speed
of the trust model. Figure 2 shows the decrease in the number of attacks by
naive and hypocritical individual attackers. The fast decrease in the attacks
performed by naive individual attackers is also observed in this figure.

The evolved model is also evaluated against recommendation-based at-
tacks in which malicious peers give unfair recommendations about good
peers. The evolved trust model has also good performance on recommendation-
based attacks. Figure 3 shows the decrement in the recommendation-based
attacks over time. In the model, if a peer intends to collect recommendations
about another peer, it firstly requests recommendations from its trustworthy
neighbors. Therefore, the unfair recommendation rate is mitigated over time
as peers gain more neighbors. However, unfair recommendations do not drop
as quickly as file-based attacks since determining an unfair recommendation
is harder than determining an infected/inauthentic file.

16

5.2. Analysis on Collaborative Attackers

Secondly, the evolved model against collaborative attackers are assessed.
These types of attackers are harder to detect, since they could protect each
other from detection. In the experiments, the collaborators are worked in
teams of 50 members. Again, the attack probability of hypocritical collabo-
rators is set to 20% for all interactions in the experiments.

Table 4: Success ratio of the trust model against collaborators for the file-based attacks

10% 30% 50%

Naive 80.1 ± 1.2 73.9 ± 1.4 72.4 ± 0.8

Hypocritical 62.3 ± 0.7 45.6 ± 0.5 36,6 ± 1.0

The results are demonstrated in the Table 4. The performance of the
evolved model against naive collaborators is as effective as the evolved model
for naive individuals. Since naive collaborators are detected easily just after
the first interactions with good peers, this attack model cannot take advan-
tage of collaboration. They are detected long before other team members
disseminate good recommendations about them. The performance of the
model is quite effective even half of the network is constructed with ma-
licious peers. The effect of collaboration is clearly seen on the results for
hypocritical collaborators. In hypocritical behavior model, the collaboration
helps malicious attackers to avoid being identified. Hence their identification
becomes more difficult compared to hypocritical individuals. However the
model still produces good results.

Figure 4 shows the number of file-based attacks over time in a network
consisting of 10% and 30% collaborators. The model dramatically decreases
the number of effective attacks carried out by naive and hypocritical collab-
orators. The fast drop in the number of effective attacks by naive attackers
is more clear as in the Figure 2.

Since recommendation-attacks are only meaningful in the presence of a
trust model, the performance of the evolved model cannot be compared with
a network not building any recommendations. However the changes in the
number of recommendation-based attacks in time are presented in Figure 5.
The number of attacks slightly increases when the collaboration takes place
between peers compared to the Figure 3. However, the trust model still
mitigates the number of recommendation-based attacks. When sufficient
information from interactions and recommendations are collected, the model

17

1500

2000

2500

3000

3500

4000

b
a

se
d

 A
tt

a
ck

s

Malicious Collaborator Attackers

Naive - 10% Hypocritical - 10% Naive - 30% Hypocritical - 30%

0

500

1000

1500

0 10000 20000 30000 40000 50000

F
il

e
-b

a
se

d
 A

tt
a

ck
s

Cycles

Figure 4: File-based attacks over time in a network consisting of collaborators

6000

8000

10000

12000

14000

16000

18000

R
e

co
m

m
e

n
d

a
ti

o
n

-b
a

se
d

 A
tt

a
ck

s

Malicious Collaborator Attackers

Naive - 10% Hypocritical - 10% Naive - 30% Hypocritical - 30%

0

2000

4000

6000

0 10000 20000 30000 40000 50000

R
e

co
m

m
e

n
d

a
ti

o
n

Cycles

Figure 5: Recommendation-based attacks over time in a network consisting of collaborators

starts to decrease the number of attacks. Slow, but a continuous decrease in
the number of attacks is observed.

5.3. Analysis on Pseudospoofers

In this section, the effectiveness of genetic programming on identifying in-
dividual pseudospoofers is evaluated. Pseudospoofers change their identities
periodically, hence rebuild their neighbors and behave as a newly partici-
pated peer in the system. The GP model is trained with a P2P network
consisting of 10% individual pseudospoofers. 10 simulations are run and the
best individual among them is chosen. Three different networks settings with
different levels of attackers (10%, 30%, and 50%) were used in the testing. In
the experiments, the attack probability of hypocritical attackers was chosen
as 20% for all interactions.

18

Table 5: Success ratio of the trust model against individual pseudospoofers for the file-
based attacks

10% 30% 50%

Naive 51.5 ± 1.2 46.8 ± 0.9 40.3 ± 1.1

Hypocritical 52.6 ± 1.4 45.2 ± 0.6 36.2 ± 0.8

Table 5 shows the performance of the model against naive and hypo-
critical pseudospoofers. While the detection ratio of naive pseudospoofers
was 51.5%, the model presents slightly better performance on preventing
from hypocritical pseudospoofers (52.6%) in the network. The model also
shows reasonable results, even in P2P networks in which half of the peers
behave maliciously. A big decrease in the identification of naive attackers
was observed when they changed their identities. Since naive attackers send
infected files continuously, they are the easiest to detect in normal circum-
stances. However in this situation, they could evade recognition by changing
their identities and successfully removing their bad history. On the other
hand, hypocritical pseudospoofers remove not only their bad history, but
also good reputations as a result of successful interactions with good peers.
Therefore, their identification ratio is slightly higher than for naive pseu-
dospoofers, which is quite different from the results in the previous sections.
While there is a dramatic difference in the success ratios of naive and hyp-
ocritical attackers in the previous sections so far, it is not the case in the
pseudospoofing attack model due to its very nature.

5.4. Analysis on Collaborative Pseudospoofers

In this section, the pseudospoofing model was evaluated with collabora-
tive attackers. The team size of collaborators was set to a maximum of 50
peers. The GP model was again trained with a network in which 10% of
the peers were malicious. The performance of the model is demonstrated
in Table 6. As it is shown, attacking collaboratively does not make a big
difference for both naive pseudospoofers and hypocritical pseudospoofers. It
could be concluded that changing identities of attackers is more effective than
attacking collaboratively in order to evade detection.

5.5. Analysis on Mixed Malicious Environments

After performing tests on each attacker type, the success of the model
was tested on mixed attacker environments. Models are trained and tested

19

Table 6: Success ratio of the trust model against collaborator pseudospoofers for the
file-based attacks

10% 30% 50%

Naive 51.1 ± 0.8 46.1 ± 0.7 36.4 ± 1.1

Hypocritical 50,4 ± 1.0 43.6 ± 1.2 30,7 ± 1.4

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000

N
u

m
b

e
r

o
f

F
il

e
-b

a
se

d
 A

tt
a

ck
s

Cycles

Different Ratios of Mixed Attackers

%30 Saldırgan %50 Saldırgan30% Attacker 50% Attacker

Figure 6: File-based attacks over time in an environment with different types of attackers

on environments containing different types of attackers in different concen-
trations. Training is performed on environments containing 30% attackers
from all types mentioned in the previous sections. Testing is done on 30%
and 50% malicious environments with different types of attackers. During
the tests, a collaborative team consisted of 50 members, attack probability
of a hypocritical attacker is 20% and the identity changing period is set to
1000 periods for pseudospoofers.

Table 7: Success ratio of the trust model in mixed environment for the file-based attacks

%30 %50

Mixed Attackers 68.3 ± 0.5 52.1 ± 1.1

The success ratios of the model of mixed malicious environments are given
in Table 7. As shown in the table, the model was very successful with 68.3%
and 52.1% success ratios in 30% and 50% malicious environments respec-
tively. Peer-to-peer systems in the real world may contain different types of
malicious users. The results in this experiment show that the model pro-
duces realistic and acceptable results in the environments close to real world
conditions. The model is able to learn different behaviors of different attack-

20

39,8
43,3

48,2
50,6 52,1

57,3
59,4

62,1 63,8 64,7
66,9 67,4 67,6

30

40

50

60

70

80

P
r
e

v
e

n
ti

o
n

 R
a

t
io

 o
f

F
il

e
-b

a
s
e

d
 A

t
ta

c
k

s

30% Mixed Attackers

0

10

20

0 25 50 75 100 125 150 175 200 225 250 275 300

P
r
e

v
e

n
ti

o
n

 R
a

t
io

 o
f

F
il

e

Number of Generations

Figure 7: Prevention ratio of file-based attacks in a 30% malicious environment with
respect to various generation numbers

ers and mitigate attacks in such extremely malicious environments. Figure 6
shows the number of file-based attacks for 1000 periods in a mixed malicious
environment. At first, good peers have difficulty to identify malicious peers
in such a mixed environment. However, they are able to identify and isolate
malicious peers over time, as they start to interact with more peers.

To understand the model’s improvement with respect to number of gen-
erations, the model was tested on a 30% mixed malicious network with a
different number of generations. As shown in Figure 7, the model’s pre-
vention ratio for file-based attacks increase as more generations are used.
Genetic operations on larger populations aid to train better trust models to
mitigate file-based attacks.

5.6. Cross Training and Tests Among Various Attacker Types

In the previous tests, training and tests are done on the same type of
attackers. In this section, training and testing was conducted between dif-
ferent types of attackers. This helps to understand adaptability of a trained
model against an unknown attacker type. Models trained on naive attackers
were tested on hypocritical attackers and vice versa. Training and testing
in these experiments were done using 10% malicious network setups. Attack
probability of hypocritical attackers was set to 20%.

In the first experiment, the models trained on naive and hypocritical in-
dividuals tested among each other. As shown in Table 8, the model trained
on naive attackers mitigated 53.6% of the attacks when tested on a net-
work with hypocritical attackers, which is approximately 17% lower than the
model trained with hypocritical attackers. The model trained with simple at-

21

Table 8: Success Ratio of Cross Training and Tests Between Naive and Hypocritical
Individuals

TEST

Naive Hypocritical

TRAINING
Naive 82.4 ± 0.4 53.6 ± 0.7

Hypocritical 81.6 ± 1.1 70.9 ± 1.3

tack behavior (naive) was not very successful on complex hypocritical attack
behavior. Because the model trained for simple attack behavior produces a
simple solution which may not be sufficient to mitigate attacks in complex en-
vironments. However, the model trained on hypocritical behavior produced
81.6% success ratio on the naive attacker environment, which is only 1% less
than the model trained with naive attackers. Hence the model trained on
more stealthy, complex attack behavior can be successful on simpler attack
behaviors.

Table 9: Success Ratio of Cross Training and Tests Between Hypocritical Individuals and
Hypocritical Collaborators

TEST

Individual Collaborator

TRAINING
Individual 70.6 ± 1.0 49.3 ± 0.9

Collaborator 67.3 ± 1.2 60.2 ± 0.8

In the second step of experiments, more difficult collaborative attack be-
havior was compared to individual attack behavior. In these experiments,
only hypocritical attack behavior was considered since it is more difficult than
naive behavior. Table 9 shows the results of these experiments. As observed
in the previous experiment, the model trained on more complex behavior
(hypocritical collaborator) produces good results on simple behavior (hypo-
critical individuals). However, the model trained on hypocritical individuals
produced a 49.3% success ratio on hypocritical collaborators, which is nearly
11% less than the model trained on hypocritical collaborators. These results
verify that the attack resistance of a model can increase in the training phase
according to the difficulty and complexity of the attacks.

22

5.7. Feature Analysis

The choice of features used for machine learning is very important. These
features must contain sufficient information to allow the fundamentals to be
developed. However too many or irrelevant features could degrade the per-
formance of GP. In this section, several experiments are run in order to inves-
tigate the effects of satisfaction, weight, and recommendation features on the
performance of the model. These features were used in both the interaction-
based and recommendation-based feature sets. The attack models employed
in the experiments are given as follows: naive attackers, hypocritical attack-
ers, naive collaborators, hypocritical collaborators. In the first experiment,
the model is trained using all features given in Table 1, except the weight re-
lated features. Secondly, only satisfaction related features are excluded from
the feature set. Lastly, recommendation features in Table 1 are not included
in the training. 10% malicious network setups are employed in both training
and testing. The team size of collaborators is set to a maximum of 50 peers,
and the attack probability of hypocritical attackers set to 20%, as in previous
experiments. The results of these experiments are shown in Table 10.

Table 10: Effects of features on Gentrust performance for file-based attacks
Satisfaction Feat. Weight Feat. Recommendation Feat. All Feat.

excluded excluded excluded

Naive Attackers 74.7 ± 0.6 77.1 ± 0.7 82.6 ± 1.2 84.1 ± 0.6

Hypocritical Attackers 54,6 ± 1.0 57.3 ± 0.8 59.2 ± 0.5 71.3 ± 1.2

Naive Collaborators 71.2 ± 0.9 71.8 ± 0.7 78.9 ± 1.1 80.1 ± 1.2

Hypocritical Collaborators 48,8 ± 1.1 51.6 ± 1.0 51.7 ± 1.3 62.3 ± 0.7

The results show that all features are critical in the identification of ma-
licious peers. Satisfaction related features seem more influential than both
weight and recommendation related features on the results. Since the re-
sults of interactions, successful or not, directly affects the satisfaction related
features, these features plays an important role in the recognition of attacks.

Excluding some features especially decreases the performance of the model
against hypocritical attacks. Nonetheless, the evolved model against naive
attackers still produces reasonable results even when lacking of weight related
or satisfaction related features during training. The absence of recommen-
dation related features shows a negligible decline in naive attackers. Naive
attackers/collaborators are identified in their first attempts before building
relationships with their neighbors. Thus the model evolved for this type
of attackers was not affected from absence of some features as much as the

23

model for hypocritical attackers/collaborators. Since hypocritical attackers
has more sophisticated attack behavior, absence of recommendation related
features could negatively affect the performance of Gentrust. If a peer inter-
acts with a hypocritical attacker while he is behaving benignly, it may not
identify the attacker. In such cases, the only way to identify such attackers
is to get recommendations about the malicious peer from other peers.

The examples of evolved formulas for individual naive attacks and collab-
orative hypocritical attacks are given in Table 11. These formulas are used
to calculate trust values of each candidate uploaders, then the uploader with
the highest trust value is selected for an interaction. As it can be seen from
these formulas, GenTrust uses most of the features in the evolved individuals.
Another observation is that the more complex attack behavior has produced
a more complex formula.

Table 11: Evolved formulas for individual naive and collaborative hypocritical attackers
Attack Type Evolved Formula

Individual Naive (rLog(avgSat + (avgNeighbWeight - (avgNeighbSucInt % avgNeighb-
Sat))) * (sqrt(sucInt / avgFileSize) * (avgSat + (avgNeighbWeight -
rLog(avgNeighbSat * avgNeighbSucInt)))) * sqrt(avgNeighbTrust / sucInt))
/ sqrt((avgSat +avgNeighbWeight) * avgNeighbSucInt)

Collaborative
Hypocritical

((((avgNeighbSucInt - avgNeighbWeight) - avgNeighbWeight) + avg-
FileSize / (avgNeighbSucInt / (sucInt * sqrt(avgNeighbSat))) /
((sqrt(avgSat) + ((avgNeighbWeight + (avgNeighbSucInt - sqrt(avgSat)))
/ sqrt(avgNeighbTrust)))))) / sqrt(avgSat))) * (avgNeighbTrust %
sqrt(sucInt * (avgNeighbWeight - rLog(avgNeighbSat)))) * rlog(sqrt(avgSat
- (avgNeighbSat / sqrt(avgNeighbWeight))))

5.8. Comparison and Discussion

Since studies in trust models have different assumptions and there is
no common simulation environment, it is difficult to compare results with
other works. Peer properties, attacker models, and network assumptions
(DHT, unstructured, or hibrid) are not same among the papers in the lit-
erature. Therefore, a direct comparison between results of GenTrust with
other studies might be misleading. For more confident results, the models
should be tested on the same simulation environment. In this paper, Gen-
Trust is compared with SORT trust model [41]. Since SORT has similar
simulation environment and assumptions, we were able to simulate it for the
same experiments. Table 12 gives the results of SORT on individual attacker
experiments. Considering the results given in Table 3, GenTrust produced
comparable results with SORT. GenTrust has performed slightly better than

24

SORT in the worst case scenario of individual attacker experiments (in 50%
malicious network with hypocritical attackers). This shows that GenTrust
has stable performance in the extremely malicious environments.

Table 12: Success ratio of SORT against individuals for the file-based attacks

10% 30% 50%

Naive 83.5 ± 0.8 79.1 ± 1.2 75.9 ± 0.9

Hypocritical 71.4 ± 0.7 59,5 ± 1.1 42.4 ± 1.3

Another experiment with SORT is performed on collaborative attack-
ers. Table 13 gives the results of SORT on collaborative attackers. As it is
expected, success of SORT decreases in the collaborative attacks especially
for hypocritical ones. Comparing to the results in Table 4, GenTrust per-
formed better than SORT for the hypocritical attacker model. Especially in
the hard scenarios of the hypocritical collaborators (30% and 50% malicious
networks), GenTrust provided a more robust performance than SORT. This
shows that the proposed model for hypocritical collaborators is successful on
handling extremely malicious environments.

Table 13: Success ratio of SORT against collaborators for the file-based attacks

10% 30% 50%

Naive 81.1 ± 1.0 78.7 ± 0.9 74.2 ± 1.2

Hypocritical 62.2 ± 0.6 38.4 ± 1.4 22.7 ± 0.8

6. Conclusion

This paper proposes GenTrust, a trust model evolved using genetic pro-
gramming. The generated model allows each peer to calculate trust values of
other peers based on interaction and recommendation based features. Naive
and hypocritical attacker models are studied with individual, collaborative,
and pseudospoofing behaviors. The model is trained against these attack
types and evaluated on various network setups containing different ratio of
malicious peers. The experimental results show that the model could suc-
cessfully decrease different types of attacks. Naive attackers are identified
easily in both individual and collaborator scenarios. Hypocritical attackers
are more difficult to deal with and more successful when they collaborate.

25

Pseudospoofing complicates the identification of malicious peers as expected.
The evolved trust model has decreased the number of file-based attacks with
promising success ratios in most scenarios. Recommendation-based attacks
are mitigated but do not decrease as much as file-based attacks, due to the
difficulty of recognizing misleading recommendations. In cross training and
tests, the models trained with simple attacker behaviors were not very suc-
cessful on complex behaviors. However the model trained on complex at-
tacker behavior showed good performance on simple attackers, which were
not included in the training. This shows that the model has a durable per-
formance on different and new attack behaviors. The importance of features
on the performance are also explored. Satisfaction related features are more
influential than both weight related and recommendation related features,
since they directly represent successful/unsuccessful interactions. Especially,
identification of hypocritical attackers/collaborators are badly affected in the
absence of these features.

Overall, the evolved model showed that genetic programming could suc-
cessfully be employed to build a trust model in peer-to-peer networks. Ge-
netic programming has a considerable potential for exploring the complex
design spaces associated with trust management on P2P networks. The pro-
posed model suits to the decentralized nature of P2P networks, since it does
not rely on any central authority or global trust values. In the future works,
this model can be extended further with online learning.

7. References

[1] K. Aberer, Z. Despotovic, Managing trust in a peer-2-peer information
system, in: Proc. of the 10th International Conference on Information
and Knowledge Management (CIKM), 2001.

[2] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Sama-
rati, Choosing reputable servents in a p2p network, in: Proc. of the 11h
Int. World Wide Web Conf., 2002.

[3] S. Kamvar, M. Schlosser, H. Garcia-Molina, The (eigentrust) algorithm
for reputation management in P2P networks, in: Proc. of the 12th World
Wide Web Conference (WWW), 2003.

[4] U. Tahta, A. Can, S. Sen, Evolving a trust model for peer-to-peer net-
works using genetic programming, in: Proc. of EvoCOMNET, 2014.

26

[5] S. Marsh, Formalising trust as a computational concept, Ph.D. thesis,
Department of Mathematics and Computer Science, University of Stir-
ling (1994).

[6] A. Abdul-Rahman, S. Hailes, Supporting trust in virtual communities,
in: Proc. of the 33rd Hawaii International Conference On System Sci-
ences (HICSS), 2000.

[7] B. Yu, M. Singh, A social mechanism of reputation management in
electronic communities, in: Proc. of the Cooperative Information Agents
(CIA), 2000.

[8] L. Mui, M. Mohtashemi, A. Halberstadt, A computational model of
trust and reputation for e-businesses, in: Proc. of the 35th Hawaii In-
ternational Conference On System Sciences (HICSS), 2002.

[9] A. Jøsang, E. Gray, M. Kinateder, Analysing topologies of transitive
trust, in: Proc. of the First International Workshop on Formal Aspects
in Security and Trust (FAST), 2003.

[10] R. Guha, R. Kumar, P. Raghavan, A. Tomkins, Propagation of trust
and distrust, in: Proc. of the 13th International Conference on World
Wide Web (WWW), 2004.

[11] P. Victor, C. Cornelis, M. De Cock, P. Pinheiro da Silva, Gradual trust
and distrust in recommender systems, Fuzzy Sets Syst. 160 (10) (2009)
1367–1382.

[12] D. Gefen, Reflections on the dimensions of trust and trustworthiness
among online consumers, SIGMIS Database 33 (3) (2002) 38–53.

[13] G. Swamynathan, B. Y. Zhao, K. C. Almeroth, Decoupling service and
feedback trust in a peer-to-peer reputation system., in: Proc. of the
2005 International Symposium on Parallel and Distributed Processing
and Applications (ISPA), Vol. 3759 of LNCS, 2005.

[14] P. Resnick, K. Kuwabara, R. Zeckhauser, E. Friedman, Reputation sys-
tems, Communications of ACM 43 (12) (2000) 45–48.

[15] C. Dellarocas, Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior, in: Proc. of the 2nd ACM
conference on Electronic commerce, EC ’00, 2000.

27

[16] J. Douceur, The sybil attack, in: Proc. of the First International Work-
shop on Peer-to-Peer Systems (IPTPS), 2002.

[17] H. Yu, M. Kaminsky, P. B. Gibbons, A. Flaxman, Sybilguard: defending
against sybil attacks via social networks, SIGCOMMComput. Commun.
Rev. 36 (4) (2006) 267–278.

[18] N. Tran, B. Min, J. Li, L. Subramanian, Sybil-resilient online content
voting, in: Proc. of the 6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2009.

[19] E. J. Friedman, P. Resnick, The social cost of cheap pseudonyms, Jour-
nal of Economics & Management Strategy 10 (2) (2001) 173–199.

[20] Z. Despotovic, K. Aberer, Trust-aware delivery of composite goods, in:
Proc. of the 1st International Conference on Agents and Peer-to-peer
Computing, 2002.

[21] T. Bearly, V. Kumar, Building trust and security in peer-to-peer sys-
tems, in: Secure Data Management in Decentralized Systems, Springer,
2007, pp. 259–287.

[22] L. Mekouar, Y. Iraqi, R. Boutaba, Reputation-based trust management
in peer-to-peer systems: taxonomy and anatomy, in: Handbook of Peer-
to-Peer Networking, Springer, 2010, pp. 689–732.

[23] N. Stakhanova, S. Ferrero, J. S. Wong, Y. Cai, A reputation-based trust
management in peer-to-peer network systems., in: Proc. of 16th Inter-
national Conference on Parallel and Distributed Computing Systems
(ISCA), 2004, pp. 510–515.

[24] A. A. Selcuk, E. Uzun, M. R. Pariente, A reputation-based trust man-
agement system for p2p networks, in: Proc. of the 2004 IEEE Interna-
tional Symposium on Cluster Computing and the Grid, CCGRID ’04,
2004.

[25] R. Zhou, K. Hwang, M. Cai, Gossiptrust for fast reputation aggregation
in peer-to-peer networks, IEEE Trans. on Knowl. and Data Eng. 20 (9)
(2008) 1282–1295.

28

[26] L. Xiong, L. Liu, Peertrust: Supporting reputation-based trust for peer-
to-peer ecommerce communities, IEEE Transactions on Knowledge and
Data Engineering 16 (7) (2004) 843–857.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for internet applications,
ACM SIGCOMM Computer Communication Review 31 (4) (2001) 149–
160.

[28] A. Visan, F. Pop, V. Cristea, Decentralized trust management in peer-
to-peer systems, in: Parallel and Distributed Computing (ISPDC), 2011
10th International Symposium on, IEEE, 2011, pp. 232–239.

[29] E. Damiani, D. C. D. Vimercati, S. Paraboschi, P. Samarati, F. Violante,
A reputation-based approach for choosing reliable resources in peer-to-
peer networks, in: Proc. of the 9th ACM Conference on Computer and
Communications Security, 2002.

[30] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati,
Managing and sharing servents’ reputations in p2p systems, IEEE Trans-
actions on Knowledge and Data Engineering 15 (4) (2003) 840–854.

[31] Y. Wang, J. Vassileva, Bayesian network trust model in peer-to-peer
networks, in: Proc. of 2nd Workshop on Agents and Peer-to-Peer Com-
puting at the Autonomous Agents and Multi Agent Systems Conference
(AAMAS), 2003.

[32] R. Zhou, K. Hwang, Powertrust: A robust and scalable reputation sys-
tem for trusted peer-to-peer computing, IEEE Transactions on Parallel
and Distributed Systems 18 (4) (2007) 460–473.

[33] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algo-
rithms, IEEE/ACM Transactions on Networking 14 (SI) (2006) 2508–
2530.

[34] G. H. Nguyen, P. Chatalic, M.-C. Rousset, A probabilistic trust model
for semantic peer to peer systems, in: Proceedings of the 2008 interna-
tional workshop on Data management in peer-to-peer systems, ACM,
2008, pp. 59–65.

29

[35] W. Conner, A. Iyengar, T. A. Mikalsen, I. Rouvellou, K. Nahrstedt,
A trust management framework for service-oriented environments., in:
Proc. of World Wide Web Conference, 2009.

[36] A. Jøsang, R. Hayward, S. Pope, Trust network analysis with subjective
logic, in: Proc. of the 29th Australasian Computer Science Conference,
2006.

[37] B. Qureshi, G. Min, D. Kouvatsos, A distributed reputation and trust
management scheme for mobile peer-to-peer networks, Computer Com-
munications 35 (5) (2012) 608–618.

[38] X. Wu, A distributed trust management model for mobile p2p networks,
Peer-to-Peer Networking and Applications 5 (2) (2012) 193–204.

[39] C. Selvaraj, S. Anand, A role based trust model for peer to peer systems
using credential trees, International Journal of Computer Theory and
Engineering 3 (2) (2011) 234–239.

[40] P. Rubesh Anand, V. Bhaskar, A unified trust management strategy for
content sharing in peer-to-peer networks, Applied Mathematical Mod-
elling 37 (4) (2013) 1992–2007.

[41] A. B. Can, B. Bhargava, Sort: A self-organizing trust model for peer-
to-peer systems, IEEE Trans. Dependable Sec. Comput. 10 (1) (2013)
14–27.

[42] W. Song, V. V. Phoha, X. Xu, An adaptive recommendation trust model
in multiagent system., in: Proc. of IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology (IAT 2004), 2004.

[43] R. Beverly, M. Afergan, Machine learning for efficient neighbor selection
in unstructured p2p networks, in: Proc. of the 2nd USENIX workshop on
Tackling computer systems problems with machine learning techniques,
SYSML’07, 2007.

[44] X. Liu, G. Tredan, A. Datta, A generic trust framework for large-scale
open systems using machine learning, Computational Intelligence 30 (4)
(2014) 700–721.

30

[45] M. E. G. Moe, M. Tavakolifard, S. J. Knapskog, Learning trust in
dynamic multiagent environments using hmms, in: Proc. of the 13th
Nordic Workshop on Secure IT Systems (NordSec 2008), 2008.

[46] E. ElSalamouny, V. Sassone, M. Nielsen, Hmm-based trust model, in:
Proc. of the Workshop on Formal Aspects in Security and Trust, Vol.
5983 of Lecture Notes in Computer Science, 2010, pp. 21–35.

[47] X. Liu, A. Datta, Modeling context aware dynamic trust using hidden
markov model, in: Proc. of the Conference on Artificial Intelligence
(AAAI), 2012.

[48] S. Wu, W. Banzhaf, The use of computational intelligence in intrusion
detection systems: A review, Applied Soft Computing 10 (2010) 1–35.

[49] S. Sen, A survey of intrusion detection systems using evolutionary com-
putation, in: Bio-inspired Computation in Telecommunications, El-
seiver, 2015.

[50] M. Crosbie, G. Stafford, Applying genetic programming to intrusion de-
tection, in: Proc. of Symposium on Genetic Programming in Conference
on Artificial Intelligence (AAAI), 1995.

[51] A. Abraham, C. Grosan, Evolving intrusion detection systems, in: Proc.
of Genetic Systems Programming: Theory and Experiences, Vol. 13,
2006, pp. 57–79.

[52] A. Orfila, J. Tapiador, A. Ribagorda, Evolving high-speed, easy-to-
understand network intrusion detection rules with genetic programming,
in: Proc. of EvoWorkshops on Applications of Evolutionary Computa-
tions, Vol. 5484 of LNCS, 2009.

[53] D. Wilson, D. Kaur, Knowledge extraction from kdd’99 intrusion data
using grammatical evolution, WSEAS Transactions on Information Sci-
ence and Applications 4 (2007) 237–244.

[54] S. Sen, J. A. Clark, A grammatical evolution approach to intrusion
detection on mobile ad hoc networks, in: Proc. of the Second ACM
Conference on Wireless Network Security, 2009.

31

[55] S. Sen, J. Clark, Evolutionary computation techniques for intrusion de-
tection in mobile ad hoc networks, Computer Networks 55 (15) (2011)
3441–3457.

[56] A. Hassanzadeh, R. Stoleru, On the optimality of cooperative intru-
sion detection for resource constrained wireless networks, Computers &
Security 34 (2013) 16–35.

[57] H. Chen, J. A. Clark, J. E. Tapiador, S. A. Shaikh, H. Chivers, P. Nobles,
A multi-objective optimisation approach to ids sensor placement, in:
Proc. of the Conference on Computational Intelligence in Security for
Information Systems, 2009.

[58] C. Selvaraj, S. Anand, Peer profile based trust model for p2p systems us-
ing genetic algorithm., Peer-to-Peer Networking and Applications 5 (1)
(2012) 92–103.

[59] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

[60] D. Fogel, What is evolutionary computation?, IEEE Spectrum 37 (2000)
28–32.

[61] W. Banzhaf, F. D. Francone, R. E. Keller, P. Nordin, Genetic pro-
gramming: an introduction: on the automatic evolution of computer
programs and its applications, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[62] M. A. Hall, Correlation-based feature selection for machine learning,
Ph.D. thesis (1999).

[63] Ecj 21: A java-based evolutionary computation and genetic program-
ming research system, http://www.cs.umd.edu/projects/plus/ec/ecj/
(2013).

[64] S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-
peer file sharing systems, in: Proceedings of the Multimedia Computing
and Networking, 2002.

[65] S. Saroiu, K. Gummadi, R. Dunn, S. D. Gribble, H. M. Levy, An analysis
of internet content delivery systems, in: Proceedings of the 5th USENIX

32

Symposium on Operating Systems Design & Implementation (OSDI),
2002.

33

