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Abstract Although there are many approaches pro-

posed for masquerade detection in the literature, few

of them consider concept drift; the problem of distin-

guishing malicious behaviours from the natural change

in user behaviours. Researchers mainly focus on updat-

ing user behaviours for adapting concept drift in mas-

querade detection. However these approaches rely on

the accuracy of the detector and do not take into ac-

count malicious instances which are erroneously added

to the updating scheme. In this study, we show that con-

ventional approaches based on instance selection are af-

fected dramatically when misclassified intrusive data is

added to the training data. Therefore we propose a new

approach based on instance weighting which updates

user behaviours gradually according to the weights as-

signed to each instance, regardless of them being ma-

licious or non-malicious. The results show that the pro-

posed approach outperforms the other updating schemes

in the literature, where the malicious instances are more

than 5% of the benign instances in the updating, which

is very likely to happen due to the high miss rate of the

existing detectors.
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1 Introduction

We usually think that most of the threats are coming

from outside. However it is shown that threats from

inside can be much more harmful than from the out-

side [3]. Studies on this research area become more

important and more popular, with research on insider

threats having accelerated, specifically on masquerade

detection, over the last decade. Masqueraders, who im-

personate another user for malicious activities, such as

exposure of private data, modifying/accessing critical

data, installing malicious software for future attacks,

pose one of the most significant problems in security

today.

Masquerade detection has been studied extensively
in the literature. Various techniques such as text min-

ing, Hidden Markov Models, Naive Bayes, Support Vec-

tor Machines, information-theoretic approaches and the

like are proposed for this problem [2]. However concept

drift, which is one of the main problems in masquer-

ade detection, is hardly considered. Concept drift is un-

avoidable in any anomaly-based detection system and

crucial for the ongoing detection of attackers. The con-

ventional approaches mainly overcome this issue through

the updating of user profiles and they show that such

detectors outperform the detectors without updating.

However the main limitation of these approaches is that

they update user profiles based on the output of the de-

tectors trained with labelled data. The ability of their

adaptation to the concept drift depends on the accuracy

of the detector. If the detector misses an intrusive be-

haviour, it will be added to the training data as benign

datum. As will be shown in this study, the performance

of these approaches decreases considerably when intru-

sive data is added to the training data.
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An ideal concept drift handling system should quickly

adapt to concept drift, be robust to noise and distin-

guish it from concept drift [31]. To achieve that, a new

approach based on Instance Weighted Naive Bayes [11]

is proposed in this study for the problem of masquer-

ade detection. Our main assumption is that the training

data can contain both benign and malicious data. How-

ever we assume that malicious data occurs more rarely

than benign data, which is believed to be a realistic as-

sumption. We aim to update a classifier correctly even

in the presence of the malicious data. The proposed ap-

proach is evaluated with different amounts of malicious

data and shown that it outperforms many techniques

in the literature. This approach could be applied to any

anomaly-based detection system.

To summarize, the contributions of this paper are

as follows:

– We showed that the updating mechanisms which

employ instance selection methodology relying on

the accuracy of a detector are affected dramatically

when misclassified intrusive data is added to the

training data.

– We adapted the Instance Weighted Naive Bayes ap-

proach (IWNB) [11] for masquerade detection based

on the assumption that benign data occurs more

frequently than malicious data in the training data.

This instance weighting approach adjusts to the changes

in user behaviours slowly, based on weights assigned

according to the similarity of the data to the labelled

instances. We demonstrate that this approach accu-

rately characterizes the change in user behaviours,

even in the presence of intrusive data. As far as we

know, this is the first use of an instance weighting

approach for concept drift in masquerade detection.

– The proposed approach was compared with some

other techniques in the literature. It was particularly

compared with the approach of Naive Bayes with

Simple Updating (NBwSU), which outperforms many

techniques in the literature. It is shown that the

proposed approach outperforms NBwSU when more

than 5% of the training data belongs to masquer-

aders, which is very likely to happen due to the high

miss rate of the proposed approaches (≈ 30-40 % or

more) in the literature.

In Section 2, approaches proposed for masquerade

detection and the concept drift problem are summa-

rized. In Section 3, the details of the de-facto dataset

employed in this paper are presented. In Section 4,

we describe the proposed method for adapting concept

drift on masquerade detection. The experimental re-

sults are discussed in Section 5 and it is shown that our

proposed approach outperforms other updating mech-

anisms in the presence of intrusive data. Section 6 is

devoted to concluding remarks.

2 Related Work

Schonlau et al. [28] presented the problem of differen-

tiating users from masqueraders by introducing a pub-

licly available dataset, called the SEA dataset [24]. They

compared six different approaches to detect masquer-

aders in their study : Uniqueness; Bayes One-Step Markov;

Hybrid Multistep Markov; Compression; IPAM; and

Sequence-Match. The results showed very low detection

rates (between 34.2% and 69.3%) with the false positive

rate between 1.4% and 6.7%. Since then, researchers

have been applying different methods to the problem

and using the SEA dataset as the de-facto standard.

Maxion and Townsted [16] applied Naive Bayes clas-

sification to masquerade detection and showed that it

outperforms the methods introduced by Schonlau et al.

[28]. They also discussed what makes a user a harder

target, and what makes a masquerader more success-

ful. In the study [16], they applied the same approach

to the Greenberg dataset [8] and demonstrated that

enriched command lines (with flags, arguments, error

codes, and the like) improved masquerade detection.

They also demonstrated that Naive Bayes with updat-

ing showed the best performance [18]. In Naive Bayes

with updating, a detector is initially trained with la-

belled data. Then the unlabelled data assigned as self

data by the detector is added to update the model.

Yung [33] updated the user behaviours with feedback

from the user. A recent approach using Naive Bayes,

where the detection of an attacker is deferred for 2-

3 blocks, is also proposed [7]. However, detecting a

masquerader after 2-3 consecutive blocks (200-300 com-

mands) might not be acceptable in real world applica-

tions. Jung proposed the self-consistent Naive Bayes

which estimates the probability of a session being a

masquerading session in a multiuser system [34] .

Most of the existing approaches employ multi-class

training. However multi-class training might be more

appropriate for the problem, due to the issues of pri-

vacy. Furthermore, obtaining data from multiple users

is time-consuming and non-trivial. Hence, Wang and

Stolfo applied one-class Naive Bayes and one-class SVM

to the problem, and demonstrated that one-class train-

ing works well with the advantages of collecting much

less data and more efficient training [32]. Chen proposed

one-class classification using length statistics of emerg-

ing patterns whose frequency changes significantly from

one dataset/class to another [4]. The method is based

on the assumption that two command blocks have long

emerging patterns if both blocks are typed by the same
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user. Salem and Stolfo compared few one-class bag-of-

words techniques and showed that one-class SVMs are

most practical for users on average [26].

Other approaches exist such as compression-based

techniques which assume that data from the same user

compresses more readily than mixed data from different

users [1][9][28], and sequence-based techniques which

use the similarity of command sequences for differenti-

ating users from masqueraders [14][15]. Oka et al. [21]

take into account not only connected events but also

events that are non-adjacent to each other while ap-

pearing within a certain distance. They also included

both normal and intrusive data in the training data

while updating user behaviours. They improved their

method using layered networks which outperform all

techniques in the literature except Naive Bayes with

updating [22]. Seo and Cha [29] applied SVM with se-

quence based kernel methods which suggested better

performance than those applying the SVM with RBF

kernel. Another sequence-based approach generally used

in bioinformatics is proposed in [5]. Even though the

results of the approach are competitive with the Naive

Bayes with updating, its computational requirements

are quite high. They also discussed command group-

ing where similar commands in the same group can be

substituted for the first time. Huang and Stamp have

recently proposed a technique based on Profile Hidden

Markov Model with positional information [13].

There are also recent approaches on how to evade

masquerade detection. Tapiador and Clark show that

a resourceful attacker can achieve his goals and evade

detection at the same time [30]. Razo-Zapata et al. gen-

erate synthetic attacks which are able to escape from

the masquerade detectors [23].

Here, we only consider the problem of masquerade

detection based on command lines. However there are

other approaches using different characteristics of users

in order to detect masqueraders such as using system

calls [20], modelling users’ search behaviours [27], or

employing GUI-based features [12]. A detailed review

of previous work on masquerade detection can be found

in [25].

2.1 Data

The Schonlau dataset is the de-facto standard and widely

used in most of the conventional approaches in the lit-

erature due to being one of the first datasets made pub-

licly available [28]. We use this standard dataset in this

study. In this dataset, 70 users were recorded for several

months, with 15,000 commands logged for each user.

However the command arguments were not logged due

to issues of privacy.

In the studies on masquerade detection, 50 randomly

selected users are used to represent benign users, and

the remaining 20 users represent masqueraders. The

first 5,000 commands of each user are used as training

data and the other 10,000 commands are used for test-

ing in the literature. The commands of masqueraders

are added into the benign users’ testing set randomly in

blocks of 100 commands. However these blocks are not

equally distributed to each user. If the current block is

not belonging to a masquerader, a masquerader block is

inserted with 1% probability, otherwise with 80% prob-

ability. This setting is called the SEA dataset and has

been employed for comparison in most of the studies in

the literature.

2.2 The Method

In this study, we adapted an algorithm called Instance

Weighted Naive Bayes (IWNB), which was recently pro-

posed by Jiang [11], for the problem of masquerade

detection. In this study, this algorithm is proposed to

update user profiles for handling the changes in user

behaviours, even in the presence of intrusive data. Fur-

thermore, the performance of IWNB is compared with

some other updating approaches in the literature. One

of these conventional approaches is Naive Bayes with

updating which we call Naive Bayes with Simple Up-

dating (NBwSU) here. Since NBwSU outperforms the

conventional approaches without updating in the liter-

ature, it is employed here as a comparison to our ap-

proach. Firstly, for a better understanding we explain

below about Naive Bayes and NBwSU, and then IWNB.

2.3 Naive Bayes with Simple Updating (NBwSU)

Naive Bayes is a supervised learning method which has

been successfully employed to a range of applications in-

cluding masquerade detection [16][17]. In Naive Bayes,

the probability of a text, t belongs to a class, y is com-

puted as the probability P(y|t) and the highest proba-

bility predicts the class in which the text belongs to. In

our problem, given a command sequence s, the prob-

ability that the command sequence belongs to user x

(ux) can be computed as :

P (ux|s) =
P (s|ux)P (ux)

P (s)
. (1)

P (s) is the probability of that specific command se-

quence occurring and it is usually omitted based on the

assumption that each command has equal probability

[30][32]. Naive Bayes assumes that all commands in a

sequence are independent of each other. Based on this
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assumption, the probability that a command sequence

s is typed by a particular user ux can be computed as:

P (s|ux) =

|s|∏
i=1

P (si|ux). (2)

Hence, the formula which calculates the probability

that the sequence belongs to user x becomes (the prior

P(ux) is also ignored) :

P (ux|s) = log(

|s|∏
i=1

P (si|ux)) =

|s|∑
i=1

log(P (si|ux). (3)

P (si|ux) is the probability of a command si for

a particular user x. In this study we use the multi-

nominal event model (bag-of-words approach) for Naive

Bayes which usually outperforms the multi-variative

Bernoulli model at large vocabulary sizes [19]. There-

fore, the probability of a command for a particular user

is computed based on the frequency of the command in

the training data with the given formula below [16]:

P (si|ux) =
Nsi,ux

+ α

Dl + α A
. (4)

Here, Nsi,ux is the count of the command si in the

labelled training data Dl. α is a pseudo count to ensure

that there are no zero counts for unseen commands, or

for command sequences. The lower the α is, the more

sensitive the classifier is. Therefore, it is chosen as 0.01

as in [16]. Alphabet size A, which is the number of dif-

ferent commands that the user’s type, is determined

separately for each user. Training data length is the

same and fixed for each user. The labelled training data

length is 5,000 here, as in the SEA setting. The block

size is chosen as 100 (commands), following other ap-

proaches on the SEA dataset in the literature.

In this study, only users’ self data is employed as

training data. This design called one-class Naive Bayes

is believed to be more appropriate for the problem due

to issues of privacy.

In Naive Bayes with updating, a detector is initially

trained with the labelled data (Dl). Then the unlabelled

data (Du) assigned as self data by the detector is added

for updating of the model. If the detector misses an in-

trusive behaviour, it will also be included as a benign

instance in the training data. In this study, updating

continuously took place for each command received. We

also included all data, regardless of being assigned as

self or non-self data by the detector, in updating in or-

der to evaluate how the performance of the detector was

affected where malicious data was erroneously included

in the training data. Therefore, we named the approach

Naive Bayes with Simple Updating, to distinguish it

from its application in the literature [18]. In the NB-

wSU approach, all instances in the training data have

equal weights. Hence, the probability of a command si
for a particular user x is computed as below:

P (si|ux) =
N(si,ux)l

+N(si,ux)u
+ α

Dl + Du + α A
. (5)

2.4 Instance Weighted Naive Bayes (IWNB)

The Instance Weighted Naive Bayes (IWNB) algorithm

is a semi-supervised algorithm which employs both la-

belled and unlabelled data for training data. This ap-

proach firstly trains a model using only the labelled

data. Then, unlabelled data is included as training data

according to the weights calculated using the labelled

data. Different weights for different instances are as-

signed in order to obtain a fine-tuned model. Our ap-

proach is similar to the Instance Weighting Naive Bayes

approach proposed in 2012, in order to train a multi-

classification model when only limited labelled data is

available. Jiang [11] proposes an approach where each

instance in the unlabelled data is weighted according

to the maximal class membership probability for multi-

classification. As Jiang states [11], the probability of

labelling an unlabelled instance to some extent repre-

sents the similarity of this instance to some labelled

instances. In this study, we employ a similar approach

to the one-class Naive Bayes for masquerade detection.

Firstly, the model is trained by using only labelled

data. Then, both labelled and unlabelled data are em-

ployed for updating user profiles to deal with the con-

cept drift. Anomaly-based intrusion detection systems

are based on the assumption that malicious behaviour

will deviate from benign behaviour. Since each datum

is weighted according to its similarity with labelled in-

stances, intrusive instances will be assigned different

weights than benign instances. Even if malicious in-

stances are added to the training data, their effect will

be very low as the majority of the data belongs to be-

nign instances.

Equation 6 shows the probability of a particular

command c for a user x, when an unlabelled command

sequense s is typed. It is specified as P (c|ux)|s|. When

no unlabelled data is typed (|s| = 0), the formula be-

comes equal to Equation 4.

P (c|ux)
|s|

=

Nc,ux
+
|s|−1∑
i=0

δ(si+1, c)P (c|ux)
i

+ α

Dl +
|s|−1∑
i=0

P (si+1|ux)
i

+ α A

.(6)

Here, δ(si+1, c) is a binary function. It returns one

when the current unlabelled command si+1 is equal to
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Fig. 1 The Comparison of our approach IWNB with NB,
NBwSU

the command c which we want to update the weight

(the probability) of, else it is zero. In equation 6, the

lowest weights are given to the new commands. The

weight is increased gradually as the command is typed.

According to our basic assumption, if the new com-

mand is typed by a masquerader; the weight will be-

come lower than the weight of new commands typed by

benign users. Furthermore, if the attacker types com-

mands used frequently by the user, the probability of

a command for the user will not be affected as much

under the NBwSU approach. Hence, even if such intru-

sive instances are added to the training data, they will

not be able to change the user behaviour easily over a

short period of time.

3 Experimental Results

To understand the effects of the proposed updating

scheme on masquerade detection, we performed a num-

ber of experiments. Firstly, we compared our approach

with one-class Naive Bayes and Naive Bayes with Sim-

ple Updating. Here, each user is trained with 5,000 com-

mands as in the SEA setting. The masqueraders are

assumed to compromise the system immediately after

the training. Hence, the masqueraders will not affect

the results. Since we want to observe the performance

of these approaches before including intrusive data in

the training, thus the updating of user profiles is carried

out only with benign data in this experiment and the

results are shown in Figure 1. The performance of each

method is shown by a ROC curve where the detection

rate (DR) is plotted on the Y axis and the false positive

rate (FPR) is plotted on the X axis. Each ROC curve is

the average of 50 users’ results computed by employing

threshold averaging [10].

Figure 1 shows that the updating schemes outper-

form the Naive Bayes without updating as has been

indicated in the literature. NBwSU decreases the false

positive dramatically as expected, because the train-

ing size is increased and each benign instance is added

to the training with equal weights. Even though the

IWNB approach decreases the false positive rate, the

updating in our approach is slower than the NBwSU

approach due to the weights assigned to each instance.

In this scenario, no intrusive instance is added to the

training. However the NBwSU approach adds the in-

stances to the training according to a binary decision

given by the detector which does not show perfect ac-

curacy. As a result of that, some intrusive data will

eventually be added to the training. Considering the

miss alarm rate of the detectors (≈ 30-40 % or more)

in the literature, this noise is unavoidable. The falsely

classified benign instances will not be included in the

training data either in that approach. These falsely clas-

sified instances could result from the natural change in

user behaviours and they are not taken into account in

updating in the NBwSU approach. This is the main is-

sue in concept drift: the difficulty of distinguishing ma-

licious behaviours from the change in user behaviours.

Therefore, we assume that intrusive data could also oc-

cur in the training data in this study.

In order to evaluate the performance of the updat-

ing schemes in the presence of the intrusive data, we

add different amounts of intrusive data (from 5% to

50% of self data) to each user. In this experiment, each

user has approximately 10,000 commands of self data

and it is tested under 500 (5%), 1,000 (10%), 2,000

(20%), 3,000 (30%), 4,000 (40%), and 5,000 (50%) com-

mands of non-self data. The intrusive data is distributed

uniformly across the testing data. Each user is evalu-

ated as a potential masquerader for other users. The

masquerader data is obtained from other users’ train-

ing data (first 5,000 commands) in the SEA setting. A

weighted Naive Bayes classifier is built for each user

whose behaviour is mixed with each masquerader sep-

arately. In each test, commands belonging to one mas-

querader data are added to the training data. There-

fore, we can investigate if a masquerader could result

in the mis-updating of the user’s behaviour, which is

crucial for the ongoing detection of masqueraders.

Figure 2 and Figure 3 respectively show the per-

formances of NBwSU and our approach, and IWNB

when user behaviours are updated with intrusive data.

The results shown here are the averages of all experi-

ments. Figure 2 demonstrates that the performance of

NBwSU is severely affected by the presence of intru-

sive data. On the other hand, since IWNB updates user
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Fig. 2 The Performance of NBwSU under Varying Amount
of Intrusive Data

behaviours gradually, it is not affected that much by

the intrusive data. Even if the masquerader types com-

mands amounting to half of what the user types, the

detector demonstrates a plausible false positive rate.

In these experiments, the malicious data is added uni-

formly across the users’ data for the purpose of sim-

plicity. There could be some usage scenarios where an

insider might have regular access to a victim’s system,

for example; a victim could leave his system unattended

for a regular meeting at the same time every day, where

a malicious user could step in to take advantage. On

the other hand, the access could also be random in real

world applications and that randomness could affect

the results. For example, if a huge amount of masquer-

ader commands is included in the updating, the model

could be deflected to become that of behaviour of the

masquerader. It is especially likely to be highly effec-

tive in the NBwSU approach, since each masquerader

command will update the model with the same weight

as that of a user. The model could in fact remain flawed

until a sufficient amount of user data is collected.

Figure 4 shows the change in the false positive rate

at a detection rate of 70% on both approaches, NB-

wSU and our approach IWNB, when differing amounts

of intrusive data are added to the model. If the intru-

sive data within the training data is more than ≈ 5%

of the self data, our approach clearly shows a better

performance than NBwSU.

Lastly, in Figure 5 we compare our approach with

some of the approaches in the literature. Many ap-

proaches in the literature generally test their results

with the six methods presented in [28] and the Naive

Bayes methods proposed in [18]. We also present the

performance of some recently proposed approaches here.
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Table 1 Comprasion with Other Approaches

Method Hits False Cost
Alarms

ECM [22] 72.3 2.5 42.7

Two-class NB with updating [18] 61.5 1.3 46.3

IWNB 70.2 4.5 56.8

OCLEP [4] 59.2 2.9 58.2

HMM [13] 70.0 5 60.0

Adaptive NB [7] 83.9 8.8 60.1

Two-class NB [18] 66.2 4.6 61.4

Uniqueness [28] 39.4 1.4 69.0

Hybrid Markov [28] 49.3 3.2 69.9

Bayes One-Step Markov [28] 69.3 6.7 70.9

IPAM [28] 41.1 2.7 75.1

Sequence Matching [28] 36.8 3.7 85.4

Compression [28] 34.2 5.0 95.8

Furthermore the approaches are compared with the cost

function below which is introduced in [16].

Cost = Misses + 6False Alarms (7)

In Table 1, the detection methods are ranked by

this cost function. As can be seen in the table, IWNB

is among the best of the classifiers. Although its per-

formance is below the NB with updating, its advantage

is that it performs with a reasonable false positive rate

with some intrusive data erroneously included in the

training data, as shown in Figure 3 and Figure 4. More-

over, it employs one-class training unlike most other

approaches in the table.

To sum up, we indicate that even though a certain

amount of intrusive data is included in the updating,
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the integrity of the proposed updating scheme will not

be degraded by these malicious instances as much as

updating schemes based on instance selection, such as

the NBwSU approach. Since all instances have equal

weights in NBwSU, a large amount of intrusive data

could seriously degrade the performance of the detec-

tor. On the other hand, our approach updates user pro-

files gradually. Since each datum is weighted according

to similarity with some labelled instances, intrusive in-

stances will be assigned different weights than benign

instances. Contrary to the NBwSU approach, intrusive

instances have different weights than benign instances

in our approach.

For the sake of simplicity, our training data consists

of all malicious and benign data. However we could

only append the benign data assigned by the detec-

tor as in the Naive Bayes with updating. Hence we

might produce better results with smaller false posi-

tive rates. While we could eliminate most of the mali-

cious data with this approach, we could also miss the

benign data misclassified by the detector. These mis-

classifications could occur due to the sudden changes

in user behaviour. Hence this might result in changes

in user behaviours not being represented in the updat-

ing model. Two kinds of concept drift could happen in

the real world; abrupt and gradual concept drift. We

mainly expect users to change their behaviours gradu-

ally. Nevertheless, sudden changes could also occur in

real life, such as a user’s new job, or the installations of

new programs, and such like. As IWNB, which includes

all instances, regardless of them being malicious or not,

it seems to be a better approach than NBwSU in order

to handle these abrupt changes.

4 Conclusion

In this study, we proposed a new approach based on

instance weighting for adapting concept drift in mas-

querade detection. Even though there are existing ap-

proaches based on instance selection, as far as we know,

this is the first application of an instance weighting ap-

proach to the problem. Our approach, Instance Weighted

Naive Bayes (IWNB), updates user profiles gradually

according to the weights assigned to each instance. It

has been shown that our approach performs better than

the detector without updating.

Masquerade detection is one of the most challenging

problems in security today. It becomes even more im-

portant as the increase of insider threats are reported

[6]. Although there are many solutions proposed for the

problem, no detector exists with perfect accuracy, hence

misclassified malicious instances will result in the up-

dating schemes. Therefore in this study we evaluated

the performance of Naive Bayes with Simple Updating

(NBwSU) in the presence of malicious instances. We es-

pecially compared our approach with NBwSU, the mod-

ified version of Naive Bayes with updating [16], which

is indicated as one of the best techniques in the litera-

ture. Since equal weights are assigned to each instance

in NBwSU, the user behaviours are updated quickly.

Although the NBwSU approach shows the best per-

formance in the ideal scenario, where only benign in-

stances are included in the training data during the

updating, it is however, dramatically affected with the

presence of malicious data. We have shown that the

false positive rate increases enormously with the in-

crease of malicious data in the training data. On the

other hand, our approach gives a reasonable accuracy

even when the masqueraders form 50% of the benign

data. It outperformed the NBwSU when the malicious

data is much more than 5% of the benign data. This is

very likely to happen due to the performance of the cur-

rent detectors. We have shown that the IWNB approach

is highly robust to noise by changing user behaviours

slowly. It provides slow but permanent adjustments to

the user behaviours. Since we expect a permanent con-

cept drift in this domain, it is very important to be

able to update user behaviours accurately even in the

presence of masqueraders.

To conclude, we investigated the adapting ability of

the updating schemes in the literature, and have pre-

sented here our proposed new approach based on in-

stance weighting for the concept drift problem. In the

future, we will continue investigating instance weight-

ing approaches on masquerade detection which seem

more suitable for the problem due to the performance

of the conventional detectors.
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