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Abstract—Android gives us opportunity to extract meaningful
information from metadata. From the security point of view,
the missing important information in metadata of an application
could be a sign of suspicious application, which could be
directed for extensive analysis. Especially the usage of dangerous
permissions is expected to be explained in app descriptions. The
permission-to-description fidelity problem in the literature aims
to discover such inconsistencies between the usage of permissions
and descriptions. This study proposes a new method based
on natural language processing and recurrent neural networks.
The effect of user reviews on finding such inconsistencies is
also investigated in addition to application descriptions. The
experimental results show that high precision is obtained by the
proposed solution, and the proposed method could be used for
triage of Android applications.

Index Terms—Android, security, description-to-permission fi-
delity, deep learning, natural language processing, recurrent
neural networks

I. INTRODUCTION

Mobile devices have become inevitable part of our lives.
With the use of applications, they provide many functionalities
such as writing/reading emails, mobile banking, finding nearby
facilities that make our lives easier. While Android is the
leading mobile operating system with approximately 75%
share in the market [1], it is also one of the most targeted
platforms by attackers [2].

There are two main techniques in order to detect malware:
static and dynamic analysis. While applications are run on
a device or an emulator to observe the runtime behaviours of
programs in dynamic analysis, in static analysis the application
is not run and its code and other files in the application
package such as manifest file are analyzed statically. Both
techniques have their own pros and cons and both could be
bypassed by evasive techniques. Besides code and malicious
behaviours of applications, Android platform give us another
data to analyze applications from the security point of view:
metadata in the market stores such as descriptions, user
reviews and ratings, privacy policies. Therefore, in the last
five years, we have started to see the applications of natural
language processing (NLP) in order to extract meaningful,
security-related data from metadata of Android applications.

In this study, a new approach based on NLP and recurrent
neural networks (RNNs) is employed in order to find incon-
sistencies between the requested permissions of an application
and its metadata. This problem is known as description-to-
fidelity problem [3] in the literature. Permissions [4] is one of
the important security mechanisms introduced by Android, so
users have to grant dangerous permissions before their usage.
While dangerous permissions need to be granted at the time of
installation before Android 6.0, they are asked to be granted
at runtime in recent versions of Android.

We expect Android developers to give more information
about the usage of dangerous permissions in their metadata
such as descriptions and privacy policies. The missing of such
an important data could be a sign of a suspicious activity,
which could be forwarded for further static and dynamic
analysis. This is the main assumption of the current study and
the previous studies proposed for the description-to-fidelity
problem. In this research, recurrent neural networks are used
to detect whether a particular application needs permission.
To this end, we suggest a model for the description text that
utilizes long-term short-term memory (LSTM) networks. Two
main contributions of the study can be summarized as follows.
Firstly, a neural model using deep recurrent neural networks
is proposed to detect the inconsistencies between requested
permissions and descriptions. Secondly, the effects of reviews
are explored for the description-to-permission fidelity problem.

The remainder of the paper is organized as follows: Section
II summarizes the previous NLP-based studies in Android
security in the literature. Section III introduces the method
based on LSTMs proposed for the problem. The experimental
results of the proposed approach on the AC-Net dataset [5]
are given and discussed in Section IV. The effects of user
reviews on the results are also discussed in this section. Finally,
Section V concludes the paper.

II. RELATED WORK

Google Play, Android official market, and other market
stores provide a platform for users to search and download
for applications. These platforms is also used by attackers



to distribute their malicious applications. In market stores,
besides the application package, other information about appli-
cations such as descriptions, ratings, user reviews exist. Such
information which is mainly based on text is called metadata.
Here, we summarize the studies that use metadata for Android
security, especially proposed for the permission-to-description
fidelity problem.

WHYPER [6] is one of the earliest attempts made to auto-
matically analyze description-to-permission fidelity of applica-
tions. WHYPER applies natural language processing methods
to identify app descriptions that involve a specific permis-
sion and thereby describe the need for a permission. For
this purpose, first-order logic representations of description
sentences are built to match them with the semantic graphs of
permissions. Another study by Watanabe et al. [7] proposes
a keyword-based method for description-to-permission fidelity
and achieves comparable results with WHYPER [6]. One of
the main advantage of that study is that it can be easily applied
to other languages.

Another model, AutoCog proposed by Qu et al. [3] is
based on explicit semantic analysis (ESA) which provides
a vectoral representation of a given text, thereby giving a
representation of the meaning in the text. The model uses
vectoral representations of app descriptions to assess their
semantic relatedness to permissions. The results obtained from
AutoCog are comparably better than that of WHYPER. A
recent study by Feng et al. [5] is the closest one to our current
study. AC-Net [5] is the only research that applied artificial
neural networks before us in the problem of permission to
description fidelity. In that study, AC-Net makes use of
sequential-based neural networks, specifically gated recurrent
unit(GRU) [8]. GRU [8] network is a type of recurrent neural
works (RNNs) which are used to model sequential data that
relate to each other. In the current study that is developed
independently from AC-NET, a method based on LSTM is
employed. Furthermore, differently from AC-NET, the effects
of user reviews are explored.

To date, several studies have examined the impact of user
reviews on Android app security and privacy features [9]–
[11]. Kong et al. [9] proposed a system called AUTOREB to
learn the privacy-related behaviors inferred from user reviews
analysis. AUTOREB is a machine learning-based algorithm
to associate the relations between reviews and privacy-related
behaviors. A recent study by Nguyen et al. [10] presented
a natural language-based model to classify the user reviews
into security&privacy-related (SPR) or non-SPR. They showed
that there is a strong correlation between SPR reviews and
privacy-related app updates. A more recent study, [11], made
use of user comments to understand why an application is
asking for permissions. The proposed NLP based SmartPI [11]
framework detects user comments related to functionality and
extracts permissions associated with them. In SmartPI, the user
reviews are not labelled.

Wang et al. [12] proposes a data mining-based model for
understanding why applications ask for their permissions.
They make use of the static analysis to extract permission

TABLE I
INFORMATION ABOUT THE SELECTED PERMISSION GROUPS.

Protection Levels Permission Groups Permission

Dangerorus

STORAGE WRITE EXTERNAL STORAGE

CONTACTS
GET ACCOUNTS
READ CONTACTS
WRITE CONTACTS

LOCATION ACCESS FINE LOCATION
ACCESS COARSE LOCATION

CAMERA CAMERA
MICROPHONE RECORD AUDIO

SMS READ SMS
SEND SMS

CALL LOG READ CALL LOGS
PHONE CALL PHONE
CALENDAR READ CALENDAR

Signature SETTINGS WRITE SETTINGS

Normal TASKS GET TASKS
KILL BACKGROUND PROCESS

related code features for their machine learning based clas-
sifiers. Finally, the classifiers outputs a categorical purpose
of a given permission. There are also few studies that focused
on automatic security-centric description generation [12], [13].
NLP has started to be used in malware detection as well.
Yu et al. [14] proposed a malware detection system based
on the privacy policy and static code analysis. Another study
is conducted by Mu et al. [13] by leveraging the Natural
Language Generation techniques to generate security-centric
application descriptions bases on the program analysis.

III. MODEL

The overall architecture of the proposed approach is given
in Figure 1. In training, which is given on the right side of
Figure 1, labelled application descriptions (i.e. sentences) are
pre-processed, then feature vectors are built based on pre-
trained word embeddings, and fed into a Long Short Term
Memory Network (LSTM). An LSTM-based prediction model
is built for each permission type. In testing, which is given
on the left side of Figure 1, a new description is first parsed
into sentences. Each sentence is pre-processed and its feature
vector is built using pre-trained word embeddings. Then, each
feature vector is fed into the trained prediction model for
each permission. If the prediction score for a permission is
larger than 0.5, the sentence is identified as a corresponding
permission sentence.

For labelled descriptions of application, AC-Net [5] dataset
is employed in this study. In this dataset, application sentences
obtained from 1417 applications’ descriptions are manually
marked as for 11 permission groups. If the selected sentence
is related to the relevant permission group, it is labeled as
1; if not, it is labeled as 0. Unlike previous studies in the
literature [3], [6], AC-Net labelled application descriptions
according to permission groups rather than single permission.
9 of these permission groups are belong to dangerous permis-
sions. Besides the dangerous permissions, 2 permission groups
are belong to the signature and normal permissions. Table I
shows the permission groups used in the AC-Net study, the



Labeled 

Application


Descriptions

New

Application

Description

Pre-trained

Embedding

Feature Vectors

Feature Vectors

Pre-trained

Embedding

LSTM-Based

Learning


Model

Prediction Model

Prediction

Fig. 1. Model Overview

TABLE II
AC-NET DATASET STATISTICS. S : SENTENCES PS : PERMISISON

SENTENCES.

Permission Groups # of Apps # of S # of PS

STORAGE 1304 23101 1338
CONTACTS 951 17353 937
LOCATION 732 12887 724
CAMERA 406 7372 522
MICROPHONE 350 6371 319
SMS 337 6484 524
CALL LOG 282 5457 323
PHONE 280 5445 199
CALENDAR 197 3637 289
SETTINGS 369 7016 560
TASKS 538 10203 344
TOTAL 1415 24726 4984

permissions that these permission groups correspond and the
number of applications in each group. Here, also the number
of sentences and, the number of permission sentences that are
marked as 1 are also shown.

Unlike Feed-Forward Neural Networks, Recurrent Neural
Networks (RNNs) [15] have the ability to process sequential
data with an internal memory that allows to remember history
while processing future inputs. Due to the vanishing gradi-
ent problem in RNNs, Long Short Term Memory Networks
(LSTMs) [16] filter out relevant information while remem-

bering past information which also provides such networks
to overcome vanishing gradients problem. We utilize LSTMs
in our approach for processing app descriptions that are
composed of sentences and sequential by nature.

First, app descriptions are pre-processed before feeding into
the LSTMs. The pre-processing tasks involve sentence tok-
enization, word tokenization, punctuation removal, stopwords
elimination, non-alpha characters removal, and stemming1.
Then embeddings of words are obtained from pre-trained word
embeddings and these embeddings of each sentence are fed
into an LSTM. The output of each LSTM gives a compo-
sitional representation of the input sentence that involves its
semantics. We use a bidirectional LSTM, where one LSTM
processes the words in a sentence in forward order, and another
LSTM processes the words in a sentence in reverse order:

si = BiLSTM(x1:n, i) (1)

Here, si = {x1, · · · , xn} is the ith sentence in the data and xj

is the embedding of the jth word in the sentence. We use si
for the compositional representation of the sentence. The final
hidden vectors of both LSTMs are concatenated to have the
sentence representation si. Once the compositional representa-
tion of each sentence is obtained from the bidirectional LSTM,
each sentence is classified using a multilayer perceptron with
a sigmoid activation function as given below:

oi = sigmoid(MLP (si)) (2)

where oi refers to the prediction output, which is called the
permission score here. It is a value between 0 and 1 in order to
decide whether the corresponding permission is stated in the
given input. If it is bigger than 0.5, the classification output
is 1, which indicates that the permission is explained in the
sentence. Otherwise, the output is 0, hence the usage of the
permission is not stated in the sentence.

Here, the problem is a binary classification problem. Hence,
a different LSTM model is produced for each permission
separately. In training, binary cross-entropy is used as a loss
function in order to measure the loss between the target output
and the predicted output in each LSTM:

= −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (3)

Here, y refers to the target output and ŷ refers to the predicted
output. The architecture of the model is given in Figure 2.

The model is implemented in DyNet library23. The di-
mension of word embeddings is 300. Therefore, each LSTM
has an input dimension of 300 and hidden layer dimension
of 128. The MLPs have a hidden layer dimension of 128
and output dimension of 1 where an output of 1 indicates
that the permission is stated in the sentence, and an output
of 0 indicates that the permission is not mentioned in the
given description sentence. We randomly initialize the model
parameters from a uniform distribution in the range of 0.08 and

1We use Porter stemmer [17].
2https://dynet.readthedocs.io/en/latest/tutorial.html
3The implementation will be publicly available if the paper gets accepted.



Fig. 2. BI-LSTM based classification.

TABLE III
EVALUATION SCORES OF THE PROPOSED MODEL ON THE AC-NET

DATASET

Permission Group Fasttext Domain adapted

ROC-AUC PR-AUC ROC-AUC PR-AUC

CONTACTS 0.96 0.71 0.97 0.73
MICROPHONE 0.88 0.33 0.94 0.39
CALENDAR 0.97 0.73 0.98 0.76

0.08. We use Adaptive Moment Estimation (Adam) optimizer
[18]. We apply gradient norm clipping to deal with exploding
gradient problem [19]. We use 10-fold cross-validation for
training.

IV. EXPERIMENTS

A. Evaluation Metrics

In this study, we used the PR-AUC and ROC-AUC metrics
as the evaluation metrics. Since the AC-Net dataset [5] dataset
is not well balanced, we used the PR-AUC and ROC-AUC
metrics instead of standard metrics such as accuracy. To give
an example from the camera permission, only 522 of the 24724
sentences in the AC-NET dataset seem to be related to the
CAMERA permission.

B. Results without Using Reviews

In this study, we initialize word vectors with our pre-trained
embeddings. We apply the skip-gram word2vec algorithm
[20], [21] in order to produce our domain adapted word
embedding from collected descriptions of Android applica-
tions. In loosely speaking, word vectors correspond to the

TABLE IV
COMPARISON WITH AC-NET

Permission Group AC-NET Our Model

ROC-AUC PR-AUC ROC-AUC PR-AUC

CONTACTS 0.97 0.75 0.97 0.72
MICROPHONE 0.96 0.50 0.96 0.43
CALENDAR 0.99 0.84 0.99 0.80
ACCESS FINE 0.98 0.77 0.98 0.75
LOCATION
CALL PHONE 0.99 0.63 0.99 0.57
CAMERA 0.98 0.76 0.98 0.70
GET TASKS 0.95 0.48 0.93 0.47
READ CALL LOGS 0.99 0.71 0.99 0.57
READ SMS 0.99 0.84 0.99 0.80
WRITE SETTINGS 0.95 0.43 0.95 0.44

meaning of words, and they could have different meanings
in different domains. Here, we have created the word vectors
from the Android context to in order to eliminate the ambiguity
that results from other meaning of words in other domains.
The results of the proposed approach are compared with
Fasttext embeddings, which is a type of unsupervised learning
algorithm for obtaining vector representations for words, in
Table III. It is clearly seen that the accuracy increases by
using the domain adapted word embeddings. The results we
have obtained by integrating our own embedding are shown in
Table IV. The AC-Net study similarly produced its own word
embedding. As can be seen in Table IV, we got comparable
results with the AC-Net study.

We analyzed the sample of erroneous cases to determine the
capacity and effectiveness of our model. Here, we compare the
proposed approach with AC-Net dataset. We did this analysis
only on the CONTACTS permission. Of the 24726 sentences
in the AC-Net dataset, only 937 have been shown to be
associated with the CONTACTS permission. Our model that
we trained correctly classifies 99.01 out of 24726 sentences.

In this section, we will explain the reasons for the erroneous
classifications. Our model can distinguish the meaning of the
same word in different contexts. For instance, our model dif-
ferentiates the meaning of ”contact” keyword in a permission
sentence (e.g. ”share your contact with your friends”) and in
a statement sentence (e.g. ”Please contact us at team loves
to hear from its users”). However, our model does not have
adequate complexity in order to classify the following sentence
”This app helps you to find apps that requests read contacts
permission”. In this example, even the candidate app does not
request the mentioned permission, our model classifies it as
a permission sentence. We require more complex models that
involve natural language understanding for such sentences.

Finally, some inconsistencies arising from the data caused
the model to produce erroneous results. This situation is very
common in cases containing information about social media.
For example, phrases such as ”share with your friends via
Facebook” are sometimes marked as permission clauses and
sometimes as normal sentences. In training and prediction
step, such labelling errors might lead to contradictory results,
thereby increasing both false positives and false negatives.



TABLE V
EFFECTS OF USER REVIEWS

Permission Group Without Reviews With Reviews

ROC-AUC PR-AUC ROC-AUC PR-AUC

READ CONTACTS 0.57 0.41 0.69 0.53
RECORD AUDIO 0.48 0.15 0.61 0.21
STORAGE 0.65 0.56 0.51 0.47

C. Results of the Document-based Model Using Reviews

One of the main reasons for developing the description-
based model in this study is to evaluate the contribution
of user reviews for solving the permission-to-description fi-
delity problem. In order to evaluate the effects of reviews, a
document-based model is trained and tested on the AC-Net
dataset. Using the same LSTM model which is trained on
the description dataset, we employed the reviews in testing.
However, this time we used the full description while feeding
into the LSTM, rather than feeding the sentences within the
description one by one. Therefore, we train the model using
the descriptions each as a single document.

In this study, user reviews are also treated as a text like a
description. In our document based model, we followed the
following strategy. Once the model is trained, we test each
description in the test set whether a permission is stated or not.
If the permission score is high and the permission is detected
in the description, then it is concluded that the permission is
required by the application. However, if the permission score
is low, then it is still possible that the permission is required
by the application but it could be ignored in the description.
This time we feed the most useful 3 user reviews of the same
application into the trained LSTM network and we concatenate
encoding of the description LSTM with encoding of the review
LSTM to predict the permission score. The permission scores
are expected to change with the inclusion of the reviews in
testing, if the permission is indeed required by the application.
The results once the reviews are included in testing are given
in Table V. Here, the threshold of the permission score is
taken as 0.5. The results show the positive effects of reviews,
especially for the READ CONTACTS and RECORD AUDIO
permissions. However, as it is noted, the performance of the
document-based is considerably lower than the sentence-based
model. The main reason of that is the number of training
samples. Because the number of documents, i.e. applications,
is considerably smaller than the total number of sentences in
the dataset. This effect is also observed for the STORAGE
permission. In the future, we aim to increase the size of the
dataset for evaluating a document-based model.

V. CONCLUSION AND FUTURE WORK

Description-to-fidelity problem refers to the inconsistencies
between requested permissions and application metadata. In
this paper, we use natural language processing methods, as
well as recurrent neural networks to tackle the description-to-
fidelity problem in Android applications. Our results show that

using a basic bidirectional LSTM network detects the incon-
sistencies between the requested permissions and application
descriptions reasonably.

Our model is similar to the recent neural model AC-Net [5]
since both use recurrent neural networks. However, their model
is based on Gated Recurrent Units (GRU), whereas ours uses
LSTMs. Another difference between their model and ours is
the inclusion of the user reviews. It is possible to have some
descriptions that do not mention about the permissions, but
still it is possible to catch those descriptions through the user
reviews. Our results show that using reviews could improve
the scores.

We plan to further investigate the methods to include the
reviews in the sentence-based model, which is left as a future
goal.
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