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Abstract—With the developments in mobile and wireless tech-
nology, mobile devices have become important part of our
lives. While Android is the leading operating system in the
market share, it is also the most targeted platform by attackers.
While there have been many solutions proposed for detection
of Android malware in the literature, the family classification
of detected malicious applications becomes important, especially
where the number of mobile malware variants increases every
day in the market. In this study, a solution based on machine
learning and hybrid analysis is proposed for the Android malware
familial classification problem. An extensive feature set includ-
ing network-related features and activity bigrams is proposed.
The effective static and dynamic analysis features are studied
thoroughly and evaluated on Malgenome [1], Drebin [2], and
UpDroid [3] datasets.

Index Terms—Android, mobile security, malware analysis
and detection, malware family classification, machine learning,
static/dynamic analysis, hybrid analysis

I. INTRODUCTION

According to the research of International Data Corporation
(IDC), Android has constituted the biggest share of mobile
market with 86.1% in 2019 and this share is predicted to
increase in the following years [4]. Hence it becomes the most
targeted mobile platform by attackers. Malicious applications
can harm end users in many ways such as stealing their
private data, spamming, sending sms to premium rate numbers.
Nowadays, the main motivation of attackers are financial gain.

Every day new mobile malware or new variations of existing
malware are introduced by malicious attackers and uploaded
to market stores. According to the McAfee Mobile Threat
Report Q1 2020, the number of mobile malware increases
rapidly every year. It is also stated that evasion techniques such
as obfuscation, updating in order to bypass security solutions
are used more than before [5]. According to another report
published by Kaspersky [6], the number of 1,152,662 mobile
malware in the first quarter of 2020 increased by 93,232 and
reached 1,245,894 in the second quarter of 2020. Because
of increasing number of mobile malware that bypass analysis
methods, hybrid analysis techniques become more important
for malware detection and familial classification, since an
evasion technique that evades one type of analysis could be
caught by another type of analysis.

There are two main malware analysis and detection tech-
niques in the literature: static and dynamic analysis. In static

analysis, a suspicious application is analyzed without running
it on any device and only the apk file is analyzed. Source code
and other components of the application such as manifest file
are analyzed. On one hand, since the application does not
need to be run on any devices, static analysis is usually more
efficient than dynamic analysis. On the other hand, attackers
could easily bypass static analysis by using evasive techniques
such as obfuscation, dynamic code loading and encryption. In
dynamic analysis, suspicious application is run on a virtual or
real device for the purpose of monitoring run time behaviours
of the application such as API/system calls, network traffic, file
operations. While dynamic analysis is robust to obfuscation
techniques, the main problem here is to trigger malicious
behaviour during the analysis, which is carried out for a limited
time. Attacker could bypass dynamic analysis by waiting for
a specific time or an action in order to run the malicious
code. Moreover, if the attacker understands that it is run in
an emulator, it may not trigger the malicious code. Hybrid
analysis aims to take advantage of both techniques.

As a result of the arms race between attackers and security
solutions, while attackers always develop their techniques in
order to bypass security mechanisms, in a similar way, secu-
rity developers improve their solutions against new malware.
Besides new malware, attackers commonly introduce new
variants of existing malware. Therefore, not only detection of
malicious applications, but also their familial classification has
become significantly important. When a malicious application
is detected, if its family is identified, its effect on the device
could be minimized with taking predetermined actions. More-
over, the familial classification helps to reduce the manual
analysis time of malware.

In this study, a new multi-class classification algorithm
is proposed in order to group malware into their families.
Although we have applied well-known machine learning ap-
proaches such as k-NN, SVM, Random Forest and Decision
Tree algorithms, the main contribution of the study is to exten-
sively analyze effective static and dynamic features on mobile
malware familial classification. Few studies in the literature,
namely UpDroid [3] and Ec2 [7], have also employed hybrid
analysis for malware family classification. In this study, in
addition to the hybrid features that are employed in those
previous studies, new feature groups such as network-related



features, activity bigrams are firstly employed for malware
family classification and thoroughly analyzed. We focus on
update attacks that are emphasized in UpDroid [3] study.
Besides UpDroid, the proposed features are evaluated on
Malgenome [1] and Drebin [2] datasets. It is shown that even
only using network-related features can be very effective for
familial classification on the UpDroid [3] dataset and high
accuracy is obtained. In general, newly added features have
positive effects on malware familial classification and has
shown to produce better results than Ec2 [7] and UpDroid
[3].

The rest of the paper is organized as follows: Section II
summarizes the related approaches in the literature. The pro-
posed approach, particularly on how features are selected and
extracted, are given in details in Section III. In Section IV,
the datasets used in the experiments are presented, and the
experimental results are discussed. The effect of each feature
group on malware family classification is extensively analyzed.
Finally, the study is concluded in Section V.

II. RELATED WORK

Machine learning-based techniques have already been pro-
posed to classify Android malware by using static, dynamic or
hybrid approaches. However, most of these approaches employ
either only static features or only dynamic features. There are
also a few study that employ hybrid features. In this section,
these approaches are reviewed.

Malgenome [1] categorizes Android malware under 4
groups according to methods they applied: repackaging, update
attack, drive-by download and standalone. They have collected
1260 Android malware sample belonging to 49 different
family from different app markets. They analyzed these 1260
Android malware samples manually over a year. In Drebin
[2], machine learning algorithms were used for classifying
Android malware into families. They have used only static
features because of the limited resources for dynamic analysis.
The feature vector that they have used consisted of Hard-
ware Components, Permissions, Intents, Activities, Services,
Content Providers and Broadcast Receivers that was given
in AndroidManifest.xml file. In addition, they have extracted
restricted API calls, IP addresses, URLs, hostnames from the
source code of an application. The Malgenome and Drebin
datasets are extensively used in the studies in order to compare
their approaches with other proposals in the literature.

Dendroid [8] employs machine learning algorithms on
Android code blocks/structures. These code blocks are rep-
resented as control flow graphs. For each malware family, the
commonly used code blocks and their count in the application
code were extracted. Droidminer [9] uses behavioural graphs
of mobile applications. DroidSIFT [10] is a semantic-based
approach that classifies Android malware via dependency
graphs obtained from source codes of applications. Another
work on familial classification study is Droidlegacy [11]. They
extract the most common malicious code blocks and Android
API calls in a family. It is tested only with 11 families and
achieved to get an accuracy of 98%. On the other hand,

attackers can mislead the model by using the most common
libraries.

As attackers use code obfuscation and code loading tech-
niques more than ever, for some cases static analysis ap-
proach has remained incapable of classifying or detecting
malware samples accurately. Therefore, a dynamic analysis
based approach has been proposed to address the issue. In
DroidScribe [12], the features such as total network traffic
size, accessed IP/Port numbers, files and Binder-IPC methods
are extracted for malware familial classification. To the best of
our knowledge, Ec2 [7] and UpDroid [3] are the only studies
that employ hybrid approach for analyzing and classifying An-
droid malware samples by using machine learning techniques.
UpDroid also presents a dataset of malware that use updating
techniques for downloading malicious code at runtime.

There are also few studies that analyze network activities of
malicious applications. CREDROID [13] analyzes the network
activities of the samples in the Malgenome dataset. They
extract information related to the following protocols: HTTP,
DNS and SSL protocols. It is noticed that 63% of the samples
generate network traffic. Rest of them either do not generate
network traffic or are not compatible with the environment.
In the current study, we employ also HTTP and DNS traffic
related features for malware familial classification. Chen et
al. [14] analyzes the network activities of the samples in the
Drebin dataset. They obtain similar results with the current
study that more than 70% malware samples generates mali-
cious traffic in their first five minutes. By using information
collected from DNS query and HTTP request packets, they
obtained 69.55% and 40.89% detection rates respectively.

III. HYBRID ANALYSIS

The increasing variety of Android malware has caused to
increase the number of families. So researchers have recently
focused on the malware family classification. In these ap-
proaches, mostly static analysis are employed, there are only
few studies based on dynamic analysis [12]. However, as noted
above, both analysis have pros and cons, therefore hybrid
analysis is employed here. Choosing the right features is
very important for producing effective classifiers and hence
distinguishing the characteristics of malware families. This is
the main of this study. By using features collected from both
static and dynamic analysis, the effective features on malware
familial classification are explored. The general overview of
the proposed approach is given in Figure 1.

The features employed in this study is represented in
detail in the subsequent section. Well-known machine learning
algorithms, namely k-nearest neighbors (k-NN), decision tree,
random forest and Support Vector Machine (SVM), has been
applied on these features. Here, Weka tool [15] is used to
implement the machine learning algorithms and the default
setting of these algorithms as given in Weka is employed.

A. Feature extraction

In static analysis, features are usually extracted from the
manifest file or directly from the code. Firstly, a reverse engi-



Fig. 1. Simplified schema of the proposed approach

neering tool called Apktool [16] is used to obtain the source
files of an application such as assests, source code, manifest
file. Here, the static features collected from the manifest file
is employed as given in UpDroid [3]. Accessing to personal
data such as call list, sms, gallery, hardware components (e.g.
camera, bluetooth, microphone) can only be used by granting
permission by the user. Therefore, the permissions, which are
among the most used features in Android malware detection
[17], are employed in this study. Other static features are
the number of services, activities, receivers, extra components
collected from the manifest file and the apk size.

As noted above, features collected from both static and
dynamic analysis are explored in this study. Besides features
given in UpDroid [3], two new feature groups collected
from dynamic analysis are introduced in this study: network-
related features and activity bigrams. In UpDroid [3], 175
features are employed in total, where most of them (110)
are dynamic features since the main focus is to classify
update attacks. The majority of static features are obtained
from the manifest file such as number of services, activities,
receivers and permissions. Dynamic features obtained from
the output of DroidBox [18] mainly consist of the number
of operations at runtime such as file operations, sent SMSs,
phone conversations, cryptographic and dynamic code loading
operations, data leakage.

Besides general information about network traffic such as
the number of sent and received network packets given in
Table III, most of the network-related features used in this
study have been extracted from HTTP and DNS protocol
headers. HTTP traffic could be used for leaking some im-
portant data such as SDK version, IMEI and IMSI numbers.
For example, Kmin family could leak the SDK version over
HTTP traffic [14]. Moreover, it is observed that samples in
a same family can show similarity in their HTTP and DNS
traffic patterns. For example, most of the samples belonging to
the shedun family has the same URL length in GET requests.
Some malware families try to leak fixed sized IMSI and IMEI
numbers of victim devices in HTTP GET requests. In this

study, the existence of the following extensions .apk and .jar in
HTTP request/reply messages is also included in the features.
Especially update attacks can download their malicious code
at runtime, these features could be indicators for malicious
activity. Therefore, these newly added features control whether
the application has downloaded a file successfully that has
the extension of .jar or .apk. The content types of HTTP
responses (app, text, video, audio, multi, and image) are
also considered. Besides IMSI/IMEI information of a device,
malicious applications can send other important data such
contact lists, phone numbers via HTTP requests as URL
parameters. Therefore, the average number of parameters in a
URL is added into the features. Besides HTTP traffic, features
related to DNS requests/responses are included in the feature
set as listed in Table II. To sum up, there are overlapping
network-related features with UpDroid [3] such as total
number of opened/closed connections, total number of network
connections, total size of network packets and number of
sent/received network packets. In addition, we analyse network
packets more deeply and extract new features from the headers
of the following protocols: IP, TCP, UDP, HTTP, DNS.

TABLE I
FEATURES RELATED TO HTTP PROTOCOL

HTTP Features Type Count
Content type of HTTP traffic Boolean 6

Size of HTTP traffic in each time interval (byte) Numeric 3
Total size of HTTP traffic (byte) Numeric 1

Number of HTTP requests/responses Numeric 2
Number of HTTP frames Numeric 1

Average content length in HTTP responses (byte) Numeric 1
Time of the first/last HTTP packet Numeric 2
Total time period of HTTP traffic Numeric 1
Number of unique HTTP servers Numeric 1

Average URL length in GET/POST messages Numeric 2
Average number of parameters in GET/POST messages Numeric 2
Existence of .apk/.jar extension in GET/POST messages Boolean 4

Number of GET/POST requests Numeric 2
Number of unique URLs in GET/POST messages Numeric 2

Size of POST messages (byte) Numeric 1

TABLE II
FEATURES RELATED TO DNS PROTOCOL

DNS Features Type Count
Time of the first/last DNS packet Numeric 2
Total time period of DNS traffic Numeric 1

Total number of unique domains in DNS queries Numeric 1
Average length of DNS domain names Numeric 1
Total number of DNS queries/responses Numeric 2

Total size of DNS packets (byte) Numeric 1

Malicious code part of an Android application could be
triggered at different times [19]. A malware can run its
malicious code when the mobile device is booted or after a
certain period of time passed. The dynamic analysis tools in
Android generally run for 10 minutes [20]. Hence, attackers
can postpone triggering malicious code in a virtual/real device.
Therefore, in this study, we run each application for 15 minutes
and divide the analysis time into three equal parts (each for



5 minutes). Some features collected separately for each time
period, since malicious code might be active in only one
period. Here, Droidbox is used for collecting data produced at
runtime.

TABLE III
OTHER NETWORK-RELATED FEATURES

Other Network-Based Features Type Count
Total network traffic size in each time period (byte) Numeric 3

Total network traffic size (byte) Numeric 2
Total UDP traffic size (byte) Numeric 1

Number of UDP frames Numeric 1
Number of SYN packets Numeric 1

Number of unique IP/Port Numeric 2
Number of opened/closed network connections Numeric 2

Number of sent/received network packets Numeric 2
SSL usage in network traffic Boolean 1

Average size of IP packets (byte) Numeric 1

Malware can leak personal and/or device information with
different activity sequences (e.g. reading a specific file on the
device device and sending this information over the network).
Therefore, consecutive activities performed by applications
are taken into account in this study. Here, the bigrams of
the activities given in Table IV are used and the number of
bigrams encountered in the application are given to the model
as features. Hence, 100 (10x10) features are collected for this
feature group. All these 100 features are firstly employed in
this study. So, together with 175 features given in UpDroid,
in total, 329 features are used in this study.

TABLE IV
ACTIVITIES USED IN BIGRAMS

Activity Name Description
cryptousage Usage of cryptographic alg. with support of Android API

dataleaks Information leakage via SMS, file or network
dexclass Code loading by using DexClassLoader

fread Reading files
fwrite Writing files

recvnet Network connections received
sendnet Network connections requested

runtimesystemevents Usage of Android system events
sendsms Sending SMS

servicestart Starting services

IV. EXPERIMENTAL RESULTS

In this section, features on malware family classification are
evaluated on three datasets, namely Malgenome [1], Drebin [2]
and UpDroid [3], and discussed. Malgenome is the first dataset
introduced and employed for comparison in the literature.
Malgenome has 1,260 applications belonging to 49 families.
This dataset is extended in Drebin [2], which has 5554
applications belonging to 178 families. UpDroid is one of the
recently proposed datasets. It consists of 2535 update attacks
belonging to 21 malware families. An update attack load its
malicious code at runtime. Since network-based features could
be more effective on update attacks, this dataset is included
in the experiments. Moreover, the feature set employed in the
UpDroid study is extended in the current study.

In the experiments, families that have larger samples have
more impact on results. Therefore, families that have more

than 10 samples are included in the evaluations. 10 fold cross-
validation method is employed for comparisons as in UpDroid.
Table V shows the results. Three metrics are employed for
comparison: accuracy, true positives (TP) or detection rate in
other words and, false positives (FP). In this table, all features
are included. The best results are obtained with the kNN
algorithm, so unless specified differently, the results of this
algorithm are given in the subsequent results.

Fig. 2. Most effective 20 features for the Malgenome dataset

Fig. 3. Most effective 20 features for the UpDroid dataset

Figure 2, Figure 3 and Figure 4 show the most effective
top twenty features on datasets. Features starting with ”n” are
representing network-related features. It is observed that quite



TABLE V
EFFECTS OF ALL FEATURES ON MALGENOME [1], DREBIN [2] AND UPDROID [3]

Algorithm Accuracy % TP % FP %
Malgenome UpDroid Drebin Malgenome UpDroid Drebin Malgenome UpDroid Drebin

kNN 97.38 98.04 96.40 97.4 98.0 96.4 1.4 0.4 0.3
Random Forest 93.49 97.44 92.33 93.5 97.4 92.3 3.9 0.6 0.9
Decision Tree 96.89 97.53 93.58 96.9 97.5 93.6 1.3 0.4 0.5
SVM 97.83 97.44 95.77 97.8 97.4 95.8 0.8 0.8 0.4

number of network-related features are in top 20 for all three
datasets. As seen in the figure, the size of the network traffic
collected in the first five minutes is the common feature in
all datasets. It is observed that malicious applications mostly
generate network traffic in their first five minutes. In addition,
the average length of URL of GET and POST requests are
among the most distinguishing features in all datasets.

Fig. 4. Most effective 20 features for the Drebin dataset

The comparison with UpDroid is given in Table VI. As
shown in the results, the proposed features have positive effects
on the results. By using all three machine learning algorithms
employed in UpDroid [3], the proposed approach produces
higher accuracy. Please note that the results are evaluated on
the UpDroid dataset.

TABLE VI
COMPARISON WITH UPDROID [3] ON THE UPDROID DATASET

Study Algorithm Accuracy % TP % FP %
Our Approach kNN 98.04 98.0 0.4
UpDroid kNN 96.85 96.4 0.4

Figure 5 shows the confusion matrix of the results given in
Table VI. The comparison results on the Drebin dataset [2]
are given in Table VII. Here, the proposed approach produces
comparable results with UpDroid.

TABLE VII
COMPARISON WITH UPDROID [3] ON THE DREBIN DATASET

Study Algorithm Accuracy % TP % FP %
UpDroid kNN 96.85 96.8 0.3
Our Approach kNN 96.39 96.4 0.3

Fig. 5. Confusion matrix for the UpDroid Dataset

As it is shown in Figure 5, the highest TP rate is obtained
without misdetection in Tordow malware family which has
only 11 samples. Malicious applications belong to Tordow
family usually download other application files to the device at
runtime [21]. Triada ans Shedun families, whose have high
number of samples in the dataset, also have high TP rates.
Despite their high TP rates, most of confusions are obtained
between Triada and Smsreg families. As it is stated in [22] and
[23] that both families have adware purposes and, download
harmless adware applications after being installed on a victim
device.

The effects of new features are represented in Table VIII.
Since the samples in the UpDroid dataset generates more net-
work traffic than the samples in the Drebin dataset, network-
based features have more positive impact on the UpDroid
dataset as shown in Table VIII. It can be inferred from the table
that over 90% of accuracy is achieved with only 55 different
network-related feature on the UpDroid dataset. 10-fold cross
validation is used for obtaining results in Table VIII Majority
of malicious applications in the UpDroid dataset have higher
network activity than applications in Drebin and Malgenome
datasets. Similarly, newly added activity bigrams features have
more positive effect on the UpDroid dataset.

Finally, the proposed approach is compared with Ec2 [7] and
UpDroid [3], two studies that use hybrid features for malware
familial classification. Drebin dataset [2] is used for a fair
comparison. In Ec2 [7], the following metrics are used for the
performance evaluation: MiF and MiAUC scores. Therefore,
the same metrics are employed in Table IX. It is shown that our



TABLE VIII
EFFECTS OF NEW FEATURES

Accuracy % TP % FP %
FEATURES / DATASETS Malgenome UpDroid Drebin Malgenome UpDroid Drebin Malgenome UpDroid Drebin
Network-Related 73.99 91.72 61.38 74.0 91.7 61.4 8.8 2.3 4.3
Activity Bigrams 75.86 92.61 70.59 75.9 92.6 70.6 8.6 2.0 2.6
Network-Related + Activity Bigrams 79.59 92.78 77.11 79.6 92.8 77.1 8.1 2.0 2.1
UpDroid Features + Network-Related 97.45 98.17 95.92 97.5 98.2 95.9 1.3 0.4 0.3
UpDroid Features + Activity Bigrams 97.73 98.04 96.32 97.7 98.0 96.3 1.1 0.3 0.3
All Features 97.36 98.04 96.40 97.4 98.0 96.4 1.4 0.4 0.3

approach outperforms than Ec2 [7] and shows similar results
with UpDroid [3] on these metrics.

TABLE IX
COMPARISON WITH EC2 [7] AND UPDROID [3] ON THE DREBIN DATASET

Study Algorithm MiF MiAUC
Ec2 kNN 0,47 0,73
UpDroid kNN 0,96 0,98
Our Approach kNN 0,96 0,98
Ec2 Random Forest 0,95 0,97
UpDroid Random Forest 0,94 0,99
Our Approach Random Forest 0,94 0,99

V. CONCLUSION

In this study, a hybrid approach is proposed for malware
familial classification. Besides features given in UpDroid [3],
the effects of two new feature groups, network-based features
and activity bigrams, are explored. To the best of the au-
thors’ knowledge, these two feature groups are firstly used on
malware familial classification. The results show the positive
effect of these features, particularly on the UpDroid dataset
[3], since malicious applications in this dataset have more
network activity than samples in other datasets, Malgenome
and Drebin.
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