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Abstract Multi-objective optimization problems (MOOPs) require to optimize two or more, often 
conflicting objectives. The wide application of MOOPs have attracted the researcher’s attention from 
academy and industry; and therefore, a great deal of effort has been put to develop effective 
approaches towards the MOOPs. In this study, a new meta-heuristic approach is introduced: Multi-
Objective Electric Fish Optimization (MOEFO). The proposed approach is based on the Electric Fish 
Optimization (EFO) algorithm, a recently proposed meta-heuristic algorithm for single-objective 
problems. Since EFO has achieved a significant performance on solving different types of problems 
such as constrained and unconstrained problems, it is extended here for solving MOOPs efficiently. 
The proposed approach is compared with well-known meta-heuristics in the literature, and the 
experimental results show that MOEFO is among the best algorithms on solving MOOPs within a 
competitive running time. Moreover, it becomes very competitive on solving challenging Many-
objective Optimization Problems (MaOPs) having four or more objectives. 

Keywords: Electric Fish Optimization algorithm, meta-heuristics, multi-objective optimization, many-
objective optimization, Pareto-based algorithm. 

1. Introduction 

Many real-life problems have at least two objectives that stay in conflict with each other. For 
example, many solutions consider not only the accuracy of the proposal, but also its efficiency. Multi-
objective optimization aims at optimizing these conflicting objectives simultaneously. To discover 
solutions for MOOPs so many meta-heuristic approaches have been proposed in the literature, and 
due to their powerful capability in dealing with this kind of problems, the new meta-heuristics are 
emerging in the recent years. These approaches are mainly classified into the following five classes: 
aggregating, lexicographic, subpopulation, Pareto-based, and hybrid approaches. Among them, the 
Pareto-based approaches are the most applied methods in the literature [1-3]. In Pareto-based 
approaches, the solution to MOOPs is generally not unique, but a set of optimal, non-dominated 
solutions called Pareto front. Hence, the Pareto front represents different trade-offs among conflicting 
objectives that decision-makers could choose the most appropriate solution according to their needs. 

This paper presents a novel meta-heuristic algorithm (MOEFO), which is based on EFO inspired by 
electric fish in the nature [4]. Nocturnal electric fish have very poor eyesight and live in muddy, murky 
water, where the visual sense is very limited. Therefore, they rely on their species-specific ability called 
electrolocation to perceive their environment. The active and passive electrolocation capabilities of 
such fish are believed to be good candidates to perform local and global search, respectively. Hence it 
is proved in [4] that an algorithm based on such capabilities of electric fish is very successful on solving 



complex problems. The main motivation of this study is to enhance this promising algorithm for solving 
MOOPs. 

In EFO, every individual carries two information called amplitude and frequency, which represent 
the degree of proximity of the fish (the candidate individual) to the best prey source (the global 
optimum). The frequency plays a key role in EFO to balance exploitation and exploration, and is used 
to determine whether an individual will perform active or passive electrolocation. It enforces better 
individuals (active individuals), which are most likely to be in the vicinity of promising regions, to exploit 
their neighborhood, and it leads other individuals (passive individuals) to explore the search space so 
that they discover new regions. The amplitude, however, adjusts the length of search areas in which 
the active individuals perform local search whereas it determines the likelihood of active mode 
individuals to be sensed by passive mode individuals, which therefore promotes the better regions to 
be more exploited. That’s because active mode individuals likely attract more individuals through their 
long-lasting higher amplitudes. 

In order to adapt and improve EFO for solving MOOPs, some modifications have been made to the 
EFO algorithm. While the active and passive electrolocation phases of EFO are mainly kept the same 
in the proposed MOEFO algorithm, some adaptations are made in order to keep a set of non-
dominated solutions instead of a single solution by using a dominance-based selection. Here, not only 
EFO is adapted for solving MOOPs but also the complexity of the algorithm is reduced for efficiency 
such as by adapting cellular-based approach [5, 6], which places individuals in a static toroidal mesh 
topology at the initialization. As a result of all these modifications, an effective and efficient multi-
objective approach is introduced and shared with the community [7].  

The proposed MOEFO is compared with well-known meta-heuristic approaches in the literature, 
namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [8], Strength Pareto Evolutionary 
Algorithm-II (SPEA2) [9], Indicator-based Evolutionary Algorithm (IBEA) [10], Multi-objective 
Evolutionary Algorithm based on Decomposition (MOEAD) [11], Multi-objective Cellular Genetic 
Algorithm (MOCell) [12], Generalized Differential Evolution 3 (GDE3) [13], and Optimized Multi-
Objective Particle Swarm Optimizer (OMOPSO) [14]. The rationale behind the selection of these meta-
heuristics as competitor algorithms is their popularity and high adoption in the studies carried out for 
performance assessment in the literature. Hypervolume (HV), SPREAD, EPSILON, Inverted 
Generational Distance (IGD) metrics are used in evaluations. The experimental results show that 
MOEFO outperforms its competitors in all metrics other than the SPREAD. It takes the third place on 
evaluations that are made by using the SPREAD metric. The results show that the solutions found by 
the proposed MOEFO algorithm are able to converge better to the Pareto-fronts and that they are 
much more diverse than those found by the competitor algorithms. Moreover, it has a comparable 
running time with the competitor algorithms.  

The proposed MOEFO algorithm is also explored on MaOPs, which are recently welcomed in the 
literature as more challenging tasks. Unlike to the MOOPs having two to three objectives, MaOPs 
possess four or more objectives; hence they introduce some challenges such as diverseness and 
convergence for most of the existing meta-heuristics. The experimental results show that MOEFO 
algorithm is better than the competitors on some MaOPs and is very competitive on other MaOPs 
according to the IGD metric. 

The rest of this paper is organized as follows: background information is given in the following 
subsection. The related studies in the literature are summarized in Section 2. An overview of EFO is 



given in Section 3. The MOEFO algorithm is introduced in Section 4. Section 5 presents the 
experimental settings, then discusses experimental results with statistical findings. Finally, this study 
is concluded in Section 6. 

1.1. Definitions 

In this section, some definitions used throughout the paper are presented. These definitions are 
the basic concepts of Pareto-based multi-objective optimization approaches. A general MOOP is 
expressed in the following form: 

Definition 1 Multi-Objective Optimization Problem: A type of problem where the objective is to find a 
solution 𝑥𝑥∗ = [𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑘𝑘∗] that minimizes a number of functions 𝑓𝑓(𝑥𝑥∗) satisfying the 𝑝𝑝 inequality 
constraints 𝑔𝑔(𝑥𝑥∗) and 𝑞𝑞 equality constraints ℎ(𝑥𝑥∗). Considering 𝑥𝑥 is a decision variable set, a function 
and constraint vectors can be written as follows (in case when the goal is maximization, minimize 
should be changed to maximize): 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) = [𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑛𝑛(𝑥𝑥)],
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑔𝑔(x) = �𝑔𝑔1(𝑥𝑥),𝑔𝑔2(𝑥𝑥), … ,𝑔𝑔𝑝𝑝(𝑥𝑥)� ≤ 0

ℎ(𝑥𝑥) = �ℎ1(𝑥𝑥),ℎ2(𝑥𝑥), … ,ℎ𝑞𝑞(𝑥𝑥)� = 0
  

The region constrained by 𝑔𝑔 and ℎ is feasible region (Ω) and any solution (𝑥𝑥) within this region (i.e., 
𝑥𝑥 ∈ Ω) is called as feasible solution. The following Pareto definitions are made with respect to the 
notations in MOOP definition. 

Definition 2 Pareto Dominance: A 𝑘𝑘-dimensional solution 𝑠𝑠 = [𝑠𝑠1, … ,𝑠𝑠𝑘𝑘] is said to dominate another 
solution 𝑣𝑣 = [𝑣𝑣1, … , 𝑣𝑣𝑘𝑘] (denoted as 𝑠𝑠 ≺ 𝑣𝑣); if 𝑓𝑓(𝑠𝑠) is partially less than 𝑓𝑓(𝑣𝑣), i.e., ∀𝑚𝑚: 𝑓𝑓𝑖𝑖(𝑠𝑠) ≤ 𝑓𝑓𝑖𝑖(𝑣𝑣)  ∧
∃𝑚𝑚: 𝑓𝑓𝑖𝑖(𝑠𝑠) < 𝑓𝑓𝑖𝑖(𝑣𝑣) | 𝑚𝑚 ∈ {1, … ,𝑚𝑚};  𝑠𝑠, 𝑣𝑣 ∈ Ω. 

Definition 3 Pareto Optimal: A solution 𝑠𝑠 is Pareto optimal if there is no other solution in Ω that 
dominates 𝑠𝑠, i.e., ¬∃𝑠𝑠� ∈ Ω ∶  𝑠𝑠� ≺ 𝑠𝑠. 

Definition 4 Pareto Optimal Set: A set 𝒫𝒫∗ that contains all the Pareto optimal solutions, i.e., 𝒫𝒫∗ =  {𝑠𝑠 ∈
Ω | ¬∃𝑠𝑠� ∈ Ω ∶ 𝑠𝑠� ≺ 𝑠𝑠}. 

Definition 5 Pareto Front: A set 𝒫𝒫ℱ∗ that contains all the objectives of Pareto optimal set (𝒫𝒫∗), i.e., 
𝒫𝒫ℱ∗ = {𝑓𝑓(𝑠𝑠) | 𝑠𝑠 ∈ 𝒫𝒫∗}. 

2. Related Works 

The complex nature of search space of some objectives in MOOPs such as non-differentiability, 
discontinuity makes traditional gradient-based techniques impossible or at least ineffective to apply. 
That’s why, researchers have proposed many population-based heuristic optimization methods, which 
are not dependent on the characteristics of the search space. Such methods target to find as many 
Pareto-optimal solutions as possible. This paper summarizes the well-known studies in this research 
area. 

The first use of heuristic algorithms for the solution of MOOPs dates back to the introduction of the 
Vector Evaluated Genetic Algorithm (VEGA) [15] to the literature. VEGA decomposes a problem with n 
objectives into 𝑚𝑚 subproblems and splits population into 𝑚𝑚 sub-populations. Hence, each decomposed 
subproblem is addressed only by the corresponding sub-population. The most drawback of VEGA is 
that it leads the entire population to converge to only one optimum due to using a selection 



mechanism that often relies on best solutions. The lack of proper selection scheme in VEGA led the 
emergence of the Pareto concept [16]. MOEAD [11] is another method that decomposes the problem 
into smaller sub-problems. The main goal is to minimize the maximum margin between each objective 
and its corresponding reference value. Similar to VEGA, it decomposes the problem into several sub-
problems and handles each of them simultaneously. The main drawback, however, is that its 
performance is directly proportional to the decomposition method employed. 

Contrary to the approaches above, IBEA [10] handles a MOOP in a single population. In the 
calculation of fitness value, it does not consider the objectives directly, but use a particular 
performance metric obtained from the objectives such as HV, EPSILON, and aims to increase the 
quality of solutions with respect to the chosen metric. While parent and offspring individuals are 
constructing the next population, the poor solutions with regard to the chosen metric are eliminated 
to maintain the size of the population. However, the use of a single metric could lead to a poor 
performance with respect to other metrics. Similar to IBEA, Pareto-based SPEA2 [9], an efficiency-
aware extension of SPEA [17], does not make directly use of the approximated Pareto front set for 
fitness evaluation either, but uses a fitness value calculated based on the Pareto domination count of 
a solution and its distance to other solutions. One of the main concerns about SPEA2 is that these two 
criteria used in fitness evaluation are treated evenly, which enables solutions that are completely 
dominated but farthest away from others to be kept in the population. NSGA-II [8] is the most popular 
Pareto-based algorithm in the literature. It is based on the Pareto dominance and distances of solutions 
in the objective space. Depending on the Pareto domination, NSGA-II splits the population into several 
fronts in which distance, called crowding distance, between the solutions is calculated. Different to 
SPEA2, non-dominated solutions that are in better fronts are allowed in NSGA-II to survive. If the size 
of next front exceeds the size of the population, the distance plays a key role in determining individuals 
to remain in the population. NSGA-III [18], is an improved version of NSGA-II, which is proposed to 
primarily solve MaOPs. Even if NSGA-III follows the same search framework as that in NSGA-II, it slightly 
differs in the selection phase. Unlike to the crowding distance, NSGA-III relies on a set of well-spread 
reference points to keep the population as diverse as possible throughout the optimization. The multi-
objective GDE3 [13] algorithm is a developed version of the multi-objective GDE [19] algorithm. GDE 
algorithm replaces only the fitness-based greedy selection scheme with the Pareto dominance-based 
selection. GDE3 is a very similar algorithm to NSGA-II. It employs Pareto front and crowding distance-
based survival schemes to keep a more diverse population in the objective space. MOCell [12] is also 
similar to NSGA-II in the selection of solutions to survive for the next generations. However, it applies 
the basic generic operators of GA in order to breed offspring in only close neighborhood. This 
neighborhood is based on a pre-defined grid topology. 

In addition to these well-known evolutionary-based algorithms, swarm-based heuristics have also 
been proposed to solve MOOPs. Such heuristics are generally proposed for solving single-objective 
problems, then their extensions are introduced for MOOPs. Particle Swarm Optimization (PSO) [20], 
Artificial Bee Colony (ABC) [21] are the most popular swarm-based algorithms in the literature. 
Therefore, they have mostly been adapted for solving MOOPs. The initial attempt to adapt PSO for 
solving MOOPs is MOPSO [22] algorithm. MOPSO is proposed as a Pareto-based approach and it makes 
a slight modification on the search operators in the single-objective PSO algorithm. With this 
modification, the leader archive in MOPSO is determined according to the Pareto dominance. Another 
most popular PSO-based multi-objective algorithm is OMOPSO [14]. OMOPSO, similar to MOPSO, 
considers the Pareto dominance of solutions for the construction of leader archive. Differently from 



MOPSO, crowding distance plays a role in OMOPSO when non-dominated solutions exceed the pre-
defined archive size. Decomposition-based PSO (MPSO/D) [23], Speed-constrained PSO (SMPSO) [24], 
Vector Evaluated PSO (VEPSO) [25], Dynamic Neighborhood PSO (DN-PSO) [26] are among other 
popular PSO variants proposed for MOOPs. 

The first modification to ABC for solving MOOPs is introduced as Vector Evaluated ABC (VEABC) 
[27], which is inspired by the VEGA and VEPSO algorithms. Therefore, similar to these algorithms, 
VEABC splits the whole population into sub-populations which are responsible for handling different 
objectives of the problem. Multi-objective ABC (MOABC) [2] is another ABC-based multi-objective 
optimization algorithm. The search framework of the single-objective ABC is generally preserved in 
MOABC except the fitness proportionate selection scheme. It is replaced with a Pareto-dominance-
based selection approach in MOABC. Asynchronous/synchronous (A/S), Pareto dominance/non-
dominated sorting (PD/NS), MOABC algorithms (A-MOABC/PD, A-MOABC/NS, and S-MOABC/NS) are 
proposed as three different implementations of the single-objective ABC to extend the standard 
algorithm to handle MOOPs [28]. As in MOABC, the search framework employed in all variants is the 
same as the standard ABC algorithm. However, they show difference in their selection schemes both 
from each other and from the standard ABC algorithm. Non-dominated Sorting-based ABC (NSABC) 
[29], Division-based multi-objective ABC (dMOABC) [30], Elitism-based multi-objective ABC (eMOABC) 
[31] are other popular ABC-based multi-objective algorithms. 

As it is pointed out earlier, PSO and ABC are the, maybe the most, popular algorithms that have 
often been used to solve MOOPs in the literature mostly due to their easy-to-implement structures 
and satisfying performances on different types of problems. Refer, respectively, to [1, 32] for a detailed 
review of PSO- and ABC-based multi-objective optimization algorithms proposed in the literature. 
Apart from them, there are also multi-objective optimization algorithms that are built on other swarm-
based single-objective optimization algorithms. These include Multi-objective Gravitational Search 
Algorithm (MOGSA) [33], Multi-objective Grey Wolf Optimization (MOGWO) [34], Multi-objective 
Firefly Algorithm (MOFA) [35], Multi-objective Teaching Learning-based Optimization (MOTLBO) [36]. 

3. An Overview of Electric Fish Optimization 

EFO algorithm is based on the following characteristics of electric fish: i) active electrolocation, ii) 
passive electrolocation, which is dependent on the activity of electric organ discharge (EOD), iii) EOD 
frequency, and iv) EOD amplitude behaviors. The local and global search is ensured in EFO through the 
modelled active and passive electrolocation, respectively. The balance between local and global 
search, however, is determined by EOD frequency. Because they are expected to further exploit the 
promising area in the vicinity of them, individuals with a higher frequency perform local search; while 
the other individuals perform global search. EOD amplitude is used in order to determine effective 
range in local search and the probability of neighboring individuals’ to be sensed in global search. 

3.1. Initialization of Population 

EFO algorithm starts by generating a population of individuals (𝑁𝑁) randomly, which is common in 
most heuristic algorithms: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥min𝑖𝑖 + 𝜙𝜙�𝑥𝑥max𝑖𝑖 − 𝑥𝑥min𝑖𝑖�  (1) 

where 𝑥𝑥𝑖𝑖𝑖𝑖  represents the position of the 𝑚𝑚th individual in the population of size |𝑁𝑁| (𝑚𝑚 = 1, 2, … , |𝑁𝑁|) in 
the 𝑑𝑑-dimensional search space. 𝑥𝑥min𝑖𝑖 and 𝑥𝑥max𝑖𝑖 are the lower and upper boundaries for dimension 



𝑠𝑠 | 𝑠𝑠 ∈ 1, 2, … ,𝑑𝑑, respectively. 𝜙𝜙 ∈ [0, 1] is a random value drawn from a uniform distribution. The 
algorithm then calculates the frequency (𝑓𝑓) and amplitude (𝐴𝐴) values of every individual with regard 
to Equation 2 and 3, respectively. 

𝑓𝑓𝑖𝑖𝑡𝑡 = 𝑓𝑓min + �
𝑓𝑓𝑚𝑚𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡 − 𝑓𝑓𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡

𝑓𝑓𝑚𝑚𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡 − 𝑓𝑓𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡𝑡𝑡 � (𝑓𝑓max − 𝑓𝑓min)  (2) 

𝐴𝐴𝑖𝑖𝑡𝑡 = 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡−1 + (1 − 𝛼𝛼)𝑓𝑓𝑖𝑖𝑡𝑡 (3) 

where 𝑓𝑓𝑚𝑚𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡  and 𝑓𝑓𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡𝑡𝑡  are, respectively, the worst and best fitness values, whereas 𝑓𝑓𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡  is the 
fitness value of the 𝑚𝑚th individual at iteration 𝑠𝑠. 𝛼𝛼 | 𝛼𝛼 ∈ [0, 1] is a constant value that determines the 
magnitude of the previous amplitude value. The initial amplitude value of the 𝑚𝑚th individual is set to its 
own initial frequency value 𝑓𝑓𝑖𝑖. 

3.2. Active and Passive Electrolocation Phases 

After the initialization of individuals, the population is divided into two groups based on the 
frequency values of individuals in the population: active and passive. The individuals in these groups 
perform either active or passive electrolocation according to the group they are assigned to. Hence, 
the search continues in parallel manner through passive (𝑁𝑁𝑃𝑃) and active individuals (𝑁𝑁𝐴𝐴), and creates 
a new population by updating individuals’ frequency and amplitude values. These steps are iterated 
for each new population until the termination criterion is met. 

Active individuals are allowed to search only their very vicinity as in the nature. Hence, they fulfill 
the local search ability of EFO algorithm. An individual in active mode first determines its active sensing 
range (𝑟𝑟𝑖𝑖) depending on its amplitude value (Equation 4), examines its neighborhood, and then evolves 
a new candidate solution through randomly selecting one of its neighbors (k) (Equation 5), or through 
a random walk in case where no neighbor exists in its vicinity (Equation 6). 

𝑟𝑟𝑖𝑖 = �𝑥𝑥max𝑖𝑖 − 𝑥𝑥min𝑖𝑖�𝐴𝐴𝑖𝑖 (4) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑�𝑥𝑥𝑘𝑘𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖� (5) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑟𝑟𝑖𝑖 (6) 

where 𝜑𝜑 ∈ [−1, 1] in Equation 5 and 6 is a random number generated from a uniform distribution and 
𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 represents newly evolved candidate solution. 

Passive individuals, however, can easily exceed their vicinity as opposed to active individuals. They 
fulfill the global search ability of EFO algorithm. They perceive their conspecific active individuals with 
a probability, and then change their locations. The being perceived probability of active individuals is 
directly proportional to their own amplitude value and their distance to the target passive individual 
as given in Equation 7. Here, EFO algorithm applies Euclidean distance formula in order to calculate 
the distance between two individuals in the space. 



𝑝𝑝𝑘𝑘 =
𝐴𝐴𝑘𝑘/𝑑𝑑𝑖𝑖𝑘𝑘

∑ 𝐴𝐴𝑖𝑖/𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝐴𝐴
 (7) 

A reference location vector 𝑥𝑥𝑤𝑤 is then built from perceived 𝐾𝐾 individuals (Equation 8) then a new 
auxiliary solution (𝑥𝑥𝑛𝑛𝑏𝑏𝑤𝑤) is generated from this reference vector (Equation 9). 

𝑥𝑥𝑤𝑤𝑖𝑖 =
∑ 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1

∑ 𝐴𝐴𝑘𝑘𝐾𝐾
𝑘𝑘=1

 (8) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑏𝑏𝑤𝑤 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑�𝑥𝑥𝑤𝑤𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖� (9) 

EFO employs an acceptance condition (Equation 10) on the generated solution in order to avoid a 
case in which a passive mode individual with higher frequency loses its promising location information 
completely to happen. 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = �
𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑏𝑏𝑤𝑤 𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑖𝑖(0,1) > 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖 𝑡𝑡𝑠𝑠ℎ𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑠𝑠𝑚𝑚  (10) 

Lastly, in order to further increase the diversity in a population, EFO employs the following equation 
that stochastically enables one parameter (𝑠𝑠) of newly evolved solution to be modified: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑥𝑥min𝑖𝑖 + 𝜙𝜙�𝑥𝑥max𝑖𝑖 − 𝑥𝑥min𝑖𝑖� (11) 

EFO has only two parameters (𝛼𝛼 and 𝐾𝐾) that need to be set. However, EFO is shown not to be very 
sensitive to changes in parameters [4]. It is also stated that distance calculation between individuals 
brings about an increase in the complexity of the algorithm; but leads EFO to show superior 
performance, particularly on complex problem. The effective performance of EFO on unconstrained 
and constrained single-objective problems is statistically revealed in detail in [4]. Refer [4] for pseudo-
code and further information on EFO. 

4. Multi-objective Electric Fish Optimization Algorithm 

In this study, EFO is extended for solving MOOPs. While the general framework based on local and 
global search is kept similar to as in EFO, some modifications have been made to the base algorithm in 
order to adapt it for MOOPs (1-2). Furthermore, by taking into account the more complex search space 
of such problems, some changes are applied in order to strengthen the exploration and exploitation 
search capabilities of the algorithm (3-4), and to reduce the complexity of the algorithm (5). The 
modifications to the EFO algorithm are summarized in the followings: 

i. The frequency updating of individuals (Equation 2) has been modified. Hence the single fitness 
proportionate-based approach is replaced with a ranking- and crowding distance-based 
approach. 

ii. The greedy selection has been replaced with a dominance-based selection and an external 
archive for storing Pareto optimal solutions is introduced. 

iii. The conditional acceptance in passive search has been improved in order to support promising 
solutions to perform their search in the vicinity of a non-dominated solution. 



iv. Binary tournament selection has been employed in active and passive search to ensure a fine-
tuned local and global search. 

v. The distance calculation in EFO has been excluded here for the sake of efficiency of the 
proposed algorithm. Instead, a cellular-based approach has been adopted. 

4.1. Population Initialization 

Here, the individuals are randomly generated as in EFO. So, Equation 1 has been applied for the 
formation of initial population. In EFO, an individual needs to measure its distance to the rest of the 
population for finding neighboring individuals in the sensing/active range. However, this distance 
calculation at each iteration increases the computation complexity of the algorithm, which is also 
stated in [4]. Therefore, it is excluded in MOEFO; instead the cellular-based approach is employed. 
Neighborhood in this approach has been organized in a random manner and so every individual has 
been directly connected with eights neighbors in this phase. 

In the area of optimization, cellular-based approach was emerged from parallelization of genetic 
algorithm [5, 6]. This approach relies on the placement of every node, which corresponds to 
individuals, in a toroidal mesh topology and edges directly connected to nodes represent the one-hop 
neighbors of individuals. 

 

Figure1. a) Toroidal mesh topology used in cGA. b) A neighborhood demonstration of 𝑚𝑚th individual. 
(N: North, S: South, W: West, E: East) 

Figure 1-a shows an exemplar mesh topology with 16 nodes. As a result of this topology, every 
individual intensively uses its nearby neighbors. In this study, a topology with eight neighbors are 
employed as shown in Figure 1-b. 

Even if the neighborhood in this approach has no relation to the geographical position of neighbor 
individuals, it still well balances the exploration and exploitation. While exploration is ensured by a 
slow diffusion of solution through the population; exploitation is ensured by application of search 
operators within the neighborhood [12]. It is worth stating here that not only distance calculation in 
EFO establishes the neighborhood, but also maintains the ‘explore first exploit later’ approach [4]. The 
cellular-based strategy employed here also contributes the ‘explore first exploit later’ approach as the 
neighborhood of every individual has initially been organized in a random manner. This allows every 



individual to communicate with the randomly chosen individuals at the beginning of the iterations and 
to exploit them towards the end of the iterations. In addition to the cellular-based approach, an archive 
has been created in this phase in order to store Pareto-optimal solutions. 

4.2. Frequency Update 

A substantial change has been applied to the frequency updating mechanism as only single 
objective was used in EFO for the calculation of individuals’ frequencies. This approach is not applicable 
in MOOPs where at least two conflicting objectives take part. That’s why, a modification based on 
Pareto ranking and crowding distance of every individual is proposed. While 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑓𝑓𝑚𝑚𝑐𝑐𝑚𝑚 represent 
the worst and the best respectively in EFO, they are evenly split into intervals that represent the total 
Pareto ranking of the population here. Individuals in the first ranking are placed into the first interval, 
those in the second ranking are placed in the second interval, and so on. Then crowding distance is 
applied separately on every sub-populations in the intervals such that the higher distance an individual 
has the closer to the upper limit of that interval it has been placed. The calculation of the frequency of 
𝑚𝑚th individual (𝑓𝑓𝑖𝑖) in the population is given in Equation 12. 

𝑓𝑓𝑖𝑖 = �1− �
𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 − 1
𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚

� − 𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖� (12) 

where 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 and 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚 represent the front at which the 𝑚𝑚th individual belongs to and the total 
number of fronts, respectively; while 𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 is a crowding distance measurement for the 𝑚𝑚th individual 
(𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖) normalized for 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖. The calculation of 𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 is given as follows: 

𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 = ��1−
𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 − 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛

𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚 − 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛
� /𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚� (13) 

where 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛, and 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚 represents, respectively, the value of minimum and 
maximum crowding distance measurements obtained from 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖. Figure 2 demonstrates the 
frequency update mechanism in MOEFO. The figure is based on a scenario where the population is 
represented with four Pareto fronts in total such that each front comprises of different number of 
solutions. The proposed frequency update approach assigns the maximum and minimum frequency 
values to every front. Hence, individuals in the first front have a frequency value between 1.00 and 
0.75, individuals in the second front have a frequency value between 0.75 and 0.5, and so on.  

The distance of every individual is then calculated separately on every front with respect to the 
crowding distance measurement (refer to Equation 13) and then normalized. Here, the individuals 
having Infinity crowding distances represent the solutions where their objective vectors are located in 
the extreme points of the front, which are known to be solutions that increase the diversity of the 
population. In MOEFO, these individuals are excluded in distance calculation (Equation 13) and they 
are assigned to the maximum frequency value of the front where they belong to. Hence, these 
individuals are promoted to perform local search and their probability of being selected by other 
individuals are increased. 



 

Figure 2. A demonstration of the frequency calculation strategy in MOEFO. 

To sum up, as in EFO, this updating mechanism ensures better individuals to have higher frequency 
and thus enables them to perform local search, and vice versa. The update procedure for individuals’ 
amplitudes remains same as in EFO, and hence it is calculated by using Equation 3 and 12. 

4.3. Active and Passive Electrolocation Phases 

Only few modification has been made on the search performed by active and passive individuals, 
which is mostly limited to the selection scheme employed in active and passive electrolocation phases. 

The main role of active individuals in EFO is to perform local search since they take into account 
only the individuals in their very close neighborhood during the search. However, depending on the 
existence of neighbors that are evaluated by using Euclidean distance formula, individuals could 
perform random walk or neighbor exploitation that could occasionally lead the algorithm to contribute 
to global and local search during the initial and final iterations, respectively. However, MOEFO does 
not rely on Euclidean distance between individuals, but instead it makes use of one-hop neighbors that 
are assigned at the initialization (see Section 4.1). The proposed scheme contributes also to global 
search at the initial iterations, because the neighborhood is randomly established. Then, it contributes 
to local search as the neighbors continuously converge to the desired global minima. In order to further 
ensure a well-balanced search, binary tournament selection procedure has been used in neighbor 
selection because it first picks out two candidate solutions in a random manner (contributes to 
exploration) then returns the better one among them (contributes to exploitation). In MOEFO, 
crowding distance operator has been used as comparator. This operator considers only the front and 
the distance of the solutions. It prefers the 𝑚𝑚th solution, if it belongs to lower front than the 𝑠𝑠th solution 
(i.e., 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 < 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖). If both solutions belong to the same front, it chooses the solution with lesser 
crowded region (i.e., 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 = 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 ∧ 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 > 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖). If both solutions belong to the 
same front and have the same distances, it returns a random solution (see Equation 14). After this 



selection mechanism, 𝑚𝑚th active individual applies the same formula as in EFO (see Equation 5) to 
evolve a new candidate solution. 

𝑟𝑟𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚

⎩
⎨

⎧ 𝑚𝑚 �𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 < 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖� ∨ ��𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 = 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖� ∧ �𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 > 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖��

𝑠𝑠 �𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 < 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖� ∨ ��𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖 = 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖� ∧ �𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖 > 𝐶𝐶𝑟𝑟𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖��
𝑚𝑚 𝑡𝑡𝑟𝑟 𝑠𝑠 𝑡𝑡𝑠𝑠ℎ𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑠𝑠𝑚𝑚

 (14) 

In passive search, EFO takes all the active individuals in the population into account in order to 
perform global search. This mechanism is also adopted in MOEFO. However, the selection approach 
applied to passive individuals has been modified, since distance-based search is excluded in MOEFO. 
As in EFO, 𝐾𝐾 active individuals are probabilistically chosen from the population in MOEFO by applying 
𝐾𝐾 times binary tournament selection. The selection procedure here is based on the amplitude values 
that are implicitly determined by the crowding distance measurement (see Section 4.2). The reason 
behind using amplitudes in the selection instead of crowding distance metric as in active search is that 
amplitude values of individuals do not change instantaneously. This adoption enables currently poor 
but formerly promising individuals being selected, which further promotes exploration capability of 
MOEFO. 

The other modification has been made on the conditional acceptance condition given in Equation 
10 by replacing it with Equation 15. This modification simply states that the probability of a promising 
solution with higher frequency being evolved through its neighbors is lowered but that through a 
Pareto-optimal solution (a) from archive is considerably increased. 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = �
𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑏𝑏𝑤𝑤 𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑖𝑖(0,1) > 𝑓𝑓𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑(𝑥𝑥𝑐𝑐𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖) 𝑡𝑡𝑠𝑠ℎ𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑠𝑠𝑚𝑚  (15) 

The final step in one iteration is on the replacement strategy of existing solutions with evolved 
candidate solutions. In EFO, greedy selection relying on only a single objective has been used. However, 
it is not suitable for MOOPs 

Therefore, a dominance-based comparator, which prefers a non-dominated solution over a 
dominated solution, is used in this study. So, a candidate solution can be replaced with its parent 
solution only when it dominates, otherwise it can be replaced with its worst neighbor or it is discarded 
when it is worse than its worst neighbor from the point of domination view. The pseudocode of the 
proposed MOEFO algorithm is provided in Figure 3. 



 

Figure 3. Pseudocode of MOEFO algorithm. 

5. Experiments 

The performance of the proposed MOEFO algorithm on MOOPs and MaOPs has been evaluated by 
some metrics that are intrinsic for such problem types. The following sections introduce benchmark 
problems, performance metrics, algorithms used for comparison and their settings, respectively. 
Finally, the experimental results with a discussion are presented. 

5.1. Benchmark Problems 

In this study, we have used 64 well-known unconstrained MOOPs having different characteristics. 
Among these, 30 problems are taken from DTLZ(Deb-Thiele-Laumanns-Zitzler) [37], LZ09 (Li-Zhang) 
[38], WFG (Walking FishGroup) [39], and ZDT (Zitzler-Deb-Thieler) [40], 10 complex MOOPs are taken 
from the CEC09 algorithm contest [41], and 24 multi-modal MOOP functions (MMF), which are 
proposed for the CEC2020 contest, are taken from the technical report given in [42]. MMFs differ from 
MOOPs in that there exists at least one local Pareto optimal solution, not dominated by any solution 
in the neighborhood, and at least two global optimal solutions, not dominated by any solution in the 
search space, corresponding to the same Pareto front in the objective space. The majority of these 
problems have become the standard problems used in the literature to conduct a fair comparison. 
They differ from each other in search space, number of parameters to optimize (6 through 30), and 
number of objectives (2 and 3). Table 1 gives the basic characteristics of these problems. It is worth 
stressing on this table that the equations of functions 𝑓𝑓, 𝑓𝑓_𝑙𝑙, or 𝑓𝑓_𝑟𝑟 in MMF family are same but their 
reference data are different. For example; MMM15, MMM15_l, and MMF15_a have same equation to 
be optimized; however, they differ only in their reference data. 

As for the performance evaluation on MaOPs, 10 different benchmark problems with different 
challenging features, which are proposed in [43], are used. Table 2 gives specific challenges of these 
problems. Refer to [43] for mathematical formulations and detailed discussions of these problems. 



5.2. Performance Metrics 

The performance metrics applied on MOOPs differ from the metrics used for evaluating single-
objective problems. Without the loss of generality, an algorithm is regarded as the best performing 
algorithm on a single-objective problem when its final solution is closest to the global optimum in 
comparison to others. However, for MOOPs, it depends on how well 𝒫𝒫ℱ∗ computed by non-
dominated solutions of an algorithm approximates to the true Pareto front (𝒯𝒯𝒫𝒫ℱ∗) of the problem. 
The following metrics reveal the convergence performance of an algorithm on MOOPs: 

Table 1. The characteristics of MOOPs used in the experiments. 

Family Problem O V Range 

DTLZ 
1 

3 
7 

0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  2-6 12 
7 22 

LZ09 
1,7,8 2 10 

0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  2-5,9 2 30 
6 3 10 

WFG 1-9 2 6 0 ≤ 𝑥𝑥𝑘𝑘 ≤ 2 × 𝑘𝑘,𝑘𝑘 ∈ {1,2, … ,𝑉𝑉}  

ZDT 
1-3 

2 
30 0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  

4 10 0 ≤ 𝑥𝑥1 ≤ 1,−5 ≤ 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 5  
6 10 0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  

CEC09 

1,2,5-7 2 

30 

0 ≤ 𝑥𝑥1 ≤ 1,−1 ≤ 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  
3 2 0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1  
4 2 0 ≤ 𝑥𝑥1 ≤ 1,−2 ≤ 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 2  
8-10 3 0 ≤ 𝑥𝑥1, 𝑥𝑥2 ≤ 1,−1 ≤ 𝑥𝑥3, … , 𝑥𝑥𝑉𝑉 ≤ 1  

MMF 

1 2 2 1 ≤ 𝑥𝑥1 ≤ 3,−1 ≤ 𝑥𝑥2 ≤ 1  
1_e 2 2 1 ≤ 𝑥𝑥1 ≤ 3, 𝑚𝑚−3 ≤ 𝑥𝑥2 ≤ 𝑚𝑚3  
2 2 2 0 ≤ 𝑥𝑥1 ≤ 1, 0 ≤ 𝑥𝑥2 ≤ 2  
4 2 2 −1 ≤ 𝑥𝑥1 ≤ 1, 0 ≤ 𝑥𝑥2 ≤ 2  
5 2 2 −1 ≤ 𝑥𝑥1 ≤ 3, 1 ≤ 𝑥𝑥2 ≤ 3  
7 2 2 1 ≤ 𝑥𝑥1 ≤ 3,−1 ≤ 𝑥𝑥2 ≤ 1  
8 2 2 −𝜋𝜋 ≤ 𝑥𝑥1 ≤ 𝜋𝜋, 0 ≤ 𝑥𝑥2 ≤ 9  
10,10_l 2 2 0.1 ≤ 𝑥𝑥1,𝑥𝑥2 ≤ 1.1  
11,11_l 2 2 0.1 ≤ 𝑥𝑥1,𝑥𝑥2 ≤ 1.1  
12,12_l 2 2 0 ≤ 𝑥𝑥1, 𝑥𝑥2 ≤ 1  
13,13_l 2 3 0 ≤ 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 ≤ 1  
14,14_a 3 3 0 ≤ 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 ≤ 1  
15,15_a,15_l,15_a_l 3 3 0 ≤ 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 ≤ 1  
16_l1,16_l2,16_l3 3 3 0 ≤ 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 ≤ 1  

O: Number of objectives, V: Number of Variables. 

5.2.1. Hypervolume (HV): 

It measures the union of the volume between every member in 𝒫𝒫ℱ∗ and a reference point 𝑟𝑟 which 
represents a vector comprising the worst values of each objective. Therefore, the higher HV implies 
that 𝒫𝒫ℱ∗ well represents 𝒯𝒯𝒫𝒫ℱ∗. HV is calculated by the following equation: 



𝐻𝐻𝑉𝑉 = 𝑣𝑣𝑡𝑡𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚 �� 𝑣𝑣𝑖𝑖
|𝒫𝒫ℱ∗|

𝑖𝑖=1
� (16) 

Table 2. The characteristics of MaOPs used in the experiments [21]. 

Problem Characteristics Range 
MaOP1 Inverse of simplex, objective scales, multimodality 

0 ≤ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑉𝑉 ≤ 1 

MaOP2 Complicated PS 
MaOP3 Complicated PS, bias 
MaOP4 Complicated PS, bias 
MaOP5 Complicated PS, degeneracy 
MaOP6 Complicated PS, degeneracy 
MaOP7 Complicated PS, local degeneracy 
MaOP8 Complicated PS, local degeneracy 
MaOP9 Complicated PS, local degeneracy 
MaOP10 Complicated PS, local degeneracy 

 
5.2.2. SPREAD 

It reveals the degree of spread of 𝒫𝒫ℱ∗ throughout the objective space through the following 
equation: 

Δ =
∑ 𝑑𝑑(𝑚𝑚𝑖𝑖 ,𝒫𝒫ℱ∗) + ∑ �𝑑𝑑(𝑚𝑚𝑖𝑖 ,𝒫𝒫ℱ∗) − �̂�𝑑�𝑚𝑚∈𝒫𝒫ℱ∗
𝑚𝑚
𝑖𝑖=1

∑ 𝑑𝑑(𝑚𝑚𝑖𝑖 ,𝒫𝒫ℱ∗)𝑚𝑚
𝑖𝑖=1 + |𝒫𝒫ℱ∗|�̂�𝑑

 (17) 

where 𝑚𝑚𝑖𝑖 stands for the 𝑚𝑚th extreme point in the 𝑚𝑚th objective in 𝒯𝒯𝒫𝒫ℱ∗. 𝑑𝑑(𝑚𝑚𝑖𝑖,𝒫𝒫ℱ∗) refers to the 
minimum distance between the extreme points in the set 𝒫𝒫ℱ∗ and 𝒯𝒯𝒫𝒫ℱ∗, whereas �̂�𝑑 is the mean of 
the distances between every point in 𝒫𝒫ℱ∗ and in 𝒯𝒯𝒫𝒫ℱ∗. 

5.2.3. EPSILON 

It calculates the minimum factor (𝜖𝜖) that is necessary for at least one solution in 𝒫𝒫ℱ∗ to dominate 
all the vectors in 𝒯𝒯𝒫𝒫ℱ∗. EPSILON is calculated according to the given equation: 

𝐸𝐸(𝒫𝒫ℱ∗,𝒯𝒯𝒫𝒫ℱ∗) = inf
𝜖𝜖∈ℝ+

{∀𝐩𝐩 ∈ 𝒯𝒯𝒫𝒫ℱ∗,∃𝐯𝐯 ∈ 𝒫𝒫ℱ∗:𝐯𝐯 ≺𝜖𝜖 𝐩𝐩} (18) 

here 𝑚𝑚 refers to the number of objective functions, whereas 𝜖𝜖 represents a very small value used 
for a tolerance. 

5.2.4. Inverted Generational Distance (IGD) 

IGD is a good indicator that reveals how diverse the solutions in objective space is and how well the 
solutions can converge. The small value of IGD suggests that the solution set obtained from the 
objective space is very close to 𝒯𝒯𝒫𝒫ℱ∗. IGD is calculated as follows: 



𝐼𝐼𝐼𝐼𝐶𝐶(𝒫𝒫ℱ∗,𝒯𝒯𝒫𝒫ℱ∗) =
∑ 𝑑𝑑(𝑣𝑣,𝒫𝒫ℱ∗)𝑣𝑣∈𝒯𝒯𝒫𝒫ℱ∗

|𝒯𝒯𝒫𝒫ℱ∗|  (19) 

here 𝑑𝑑(𝑣𝑣,𝒫𝒫ℱ∗) gives the minimum Euclidean distance between the solution 𝑣𝑣 and every point from 
the set 𝒫𝒫ℱ∗. 

5.3. Competitor Algorithms 

For a comprehensive performance evaluation, well-known evolutionary- and swarm-based multi-
objective optimization algorithms have been used as competitor methods against MOEFO. These 
include NSGA-II [8], NSGA-III [18], SPEA2 [9], IBEA [10], MOEAD [11], MOCell [12], GDE3 [13], and 
OMOPSO [14]. The majority of the competitor algorithms are Pareto-based relying mostly on Pareto-
domination and crowding distance measurements for selection of solutions for the next generations. 
Among them, IBEA and MOEAD are not Pareto-based which, respectively, use a fitness-based greedy 
comparison to select the individuals for the survival. While fitness calculation in IBEA depends on the 
indicator metric value (such as HV) of the individuals, it is maximum difference between individual’s 
𝑠𝑠th objective and ideal point for 𝑠𝑠th objective found by the population. Typical crossover and mutation 
operators are employed for breeding new individuals in these algorithms. Some of these algorithms 
(i.e., MOEAD, MOCell, and OMOPSO) possess an external memory (known as archive) to keep non-
dominated solutions until the end of the search, whereas the remaining algorithms output only the 
non-nominated solutions found at the end of the search. Among these competitor approaches, MOCell 
and MOEAD make use of a neighboring structure and every individual in these algorithms performs 
the search in its neighborhood. 

Table 3. The comparative features of competitor algorithms. 

Algorithm Category 

Selection Search 
Procedure 

Archive 
Pareto-domination (●) 
Greedy comparison (●) Crossover (■) 
Crowding distance (○) Mutation (□) 

NSGAII Pareto-based ● ○ ■ □  
NSGAIII Pareto-based ● ○ ■ □  
SPEA2 Pareto-based ● ■ □  
IBEA Indicator-based ● ■ □  
MOEAD Decomposition-based ● ■ □ ✓ 
MOCell Pareto-based ● ○ ■ □ ✓ 
GDE3 Pareto-based ● ○ ■  
OMOPSO Pareto-based ● ○ * □ ✓ 

*: Crowding distance-based search procedure of the standard PSO [15]. 

These competitor algorithms are reviewed in Section 2 and their features are outlined in 
comparative manner in Table 3. jMetal (Meta-heuristic Algorithms in Java) [44, 45], a Java-based 
framework for multi-objective optimization with meta-heuristics, is used for the implementation of 
these competitor algorithms. jMetal provides some facilities such as state-of-the algorithms, most-
popular benchmark problems, and the like. Refer to [44] for detailed description of this framework. 



The detailed experimental settings and performance comparisons are given below separately for 
MOOP and MaOP benchmark sets. 

5.4. Performance Evaluation on MOOP Benchmark Sets 

5.4.1. Parameter tuning 

The parameter values of the competitor algorithms are taken from the default values of jMetal. As 
for the parameter set of the proposed MOEFO algorithm (i.e., 𝛼𝛼 and 𝐾𝐾), the design of experiment (DoE) 
methodology has been conducted in order to find out their optimal values. DoE methodology first uses 
a second order linear model in order to learn the relation between input (parameter values) and the 
output of the algorithm through a coefficient vector. It then uses quadratic programming with that 
coefficient vector to find the approximation to the optimal parameter. 

As it would be too exhaustive to run DoE with every possible parameter setting, three-level full 
factorial design, in which each parameter is set to three levels (referred to as high, intermediate, and 
low), has been adopted here. To construct input and output data, MOEFO has been run 10 times with 
each parameter setting for all the problems in Table 1 (i.e., 32 × 10 times per problem). The function 
evaluation number (FEN) and the population size have been set as 100,000 and 100, respectively. The 
performance metrics (HV, SPREAD, EPSILON, and IGD) are considered as the output of MOEFO for the 
given parameter setting. While the values of 0.01, 0.5, and 0.99 have been used for 𝛼𝛼, those of 1, 25, 
and 50 have been used for 𝐾𝐾 in the DoE methodology. As a result, it is found out that MOEFO performs 
better with respect to all the metrics on overall when 𝛼𝛼 and 𝐾𝐾 are set to 0.5 and 37, respectively. 
Hence these values have been set for the experiments in this study. 

In the experiments, every algorithm has been run 50 times with a population and generation size 
of 100 and 1,000 (corresponding to 100,000 FENs), respectively. All the algorithms have been run in 
parallel using a client machine (Intel Core i7 CPU with 4 cores and 8 threats, 16 GB RAM). The MOEFO 
implementation in jMetal framework that is ready-to-replicate the same experimentation is shared 
with the community [7]. 

5.4.2. Results 

This section examines the convergence and diversification performance of every algorithm on the 
employed benchmark problems by using HV, SPREAD, EPSILON, and IGD metrics. The number of 
problems on which every algorithm has performed a satisfying performance (with ranking of 1st and 
2nd algorithm) has comparatively been shown in Figure 4. 

As it is clearly seen in the figure, MOEFO is superior than other algorithms by performing the 
best/2nd best performance on the problems with respect to HV and EPSILON metrics. The results (the 
number of problems solved as the best algorithm, the number of problems solved as the second-best 
algorithm) on HV and EPSILON metrics respectively are (16/15), (11/21). OMOPSO, MOCell, and SPEA2 
are the most competitive algorithms against MOEFO with respect to SPREAD and IGD metrics. In 
addition, it can be seen from the figure that NSGA-II, IBEA, and GDE3 have shown poor performance 
on overall. 



 

Figure 4. Number of problems every algorithm has shown better performance. 

These findings have also been shown separately for every problem family in Figure 5 to reveal if the 
performances of the algorithms are problem dependent. The figure shows that NSGA-II has shown the 
poorest performance on all problem families with no exception. While SPEA2 has shown its best 
performance on DTLZ and MMF problem families, IBEA has shown its best performance on only MMF 
problem family. However, they perform poorly on the remaining problem families. MOEAD is another 
algorithm that has shown its better performance on the LZ09 and CEC09 problem families. As for 
MOCell and GDE3, they become insufficient to solve CEC09, LZ09 problem families. Among them, GDE3 
has also shown the poorest performance on MMF problem family. OMOPSO has shown a satisfying 
performance on overall; but it slightly deteriorates on ZDT family. MOEFO has also shown a better or 
at least competitive optimization performance on every problem family on overall. However, as 
compared to MOCell and GDE3 algorithms, MOEFO shows a slight degradation on ZDT, which has only 
five functions. 

To further examine the overall performance of every algorithm, Friedman’s ranking test is applied 
and its results are provided in Table 4. It is worth stressing here that the algorithm with higher mean 
HV values performs better than others. However, for other metrics, the performance of the algorithm 
increases as the metric value becomes smaller. The best and 2nd best performing algorithms have 
been implied with dark and light gray cell colors, respectively. It can be concluded from the table that 
MOEFO has outperformed its competitors on HV, EPSILON, and IGD metrics. Only on evaluations by 
using the SPREAD metric, it becomes the third best algorithm and comes after OMOPSO and MOCell. 
According to these results, the following conclusions can be drawn: 

• HV: A much wider search space is dominated by MOEFO algorithm than the competitor 
algorithms. Moreover, non-dominated solutions found by MOEFO is much closer to the 𝒯𝒯𝒫𝒫ℱ∗ 
of the problem. 

• SPREAD: The distance from the extreme points of non-dominated solutions found by MOEFO 
to those of 𝒯𝒯𝒫𝒫ℱ∗ is not as close as that yield by OMOPSO and MOCell algorithms. 



 

Figure 5. Number of problems every algorithm has shown better performance for every problem 
family. 

• EPSILON: In comparison to other algorithms, MOEFO is able to dominate the solutions in 𝒯𝒯𝒫𝒫ℱ∗ 
with a less tolerance value on overall. This also supports the finding by HV stating better 
convergence to 𝒯𝒯𝒫𝒫ℱ∗. 

• IGD: The non-dominated solutions found by MOEFO are much diverse and much closer to 
𝒯𝒯𝒫𝒫ℱ∗ than all the competitor algorithms. 

Wilcoxon signed-rank test at a statistical significance level of 95% has been used for all the 
performance metrics separately in the experiment in order to find out whether the difference between 
MOEFO and any of the competitor algorithms is significant or not. In this study, the null hypothesis is 
that there is no statistically significant difference between the median of the results produced by 
MOEFO and its competitor algorithm. To speculate that EFO performs much better on a given problem, 
the null hypothesis should be rejected or an alternative hypothesis should be accepted. The p-values 
in Wilcoxon’s sign test is considered for acceptance of the null hypothesis. So, the null hypothesis can 
only be rejected as long as the p-value is less than 0.05 (due to the adopted significance level, 95%) 
and vice versa. Based on the significance comparison, the number of cases 𝑚𝑚) where null hypothesis is 
rejected and MOEFO exhibited superior (+) or inferior (-) performance, and ii) where null hypothesis is 



accepted and the performance between MOEFO and competitor algorithm is very similar (=) is found. 
These ‘+/=/-’ cases with respect to every performance metric have been given separately for each 
problem family in Table 5. The last rows of every problem metric (𝑆𝑆𝑠𝑠𝑚𝑚) show the total count of the 
cases. The gray cell colors in the table indicate that MOEFO has shown better performance than the 
competitor algorithms with respect to the evaluation metric. For the sake of better readability, the p-
values as well as cumulative positive and negative rank values obtained from Wilcoxon’s test have 
been excluded from the table and they can be found in [7]. 

Table 4. Friedman’s ranking values calculated separately on evaluation metrics for MOOPs. 

Algorithms 
Ranking 

HV SPREAD EPSILON IGD 
NSGA-II 3.531 6.266 5.406 5.234 
SPEA2 4.922 3.703 4.469 3.813 
IBEA 3.469 6.438 5.969 7.406 
MOEAD 4.453 5.844 4.703 4.578 
MOCell 4.719 3.172 4.359 4.281 
GDE3 4.898 3.984 3.891 3.766 
OMOPSO 4.094 3.016 4.047 3.688 
MOEFO 5.914 3.578 3.156 3.324 

Similar to the Friedman’s ranking evaluation, the Wilcoxon’s statistical results also affirm better 
solutions by MOEFO on HV, EPSILON, and IGD metrics while its performance becomes competitive with 
respect to the SPREAD metric, where OMOPSO and MOCell have shown their superior performances. 
From the cumulative performance of the Wilcoxon’s test, it can be seen that MOEFO has remarkably 
shown better performance than all competitor algorithms with respect to the HV, EPSILON, and IGD 
metrics. It is better than NSGA-II, SPEA2, IBEA, MOEAD, and GDE3 with respect to the SPREAD metric. 
Only OMOPSO and MOCell algorithms have shown better performance than the proposed MOEFO on 
only the SPREAD metric according to the Wilcoxon’s sign test. To conclude, both Friedman’s ranking 
evaluation and Wilcoxon’s sign test results reveal that NSGA-II, IBEA, and MOEAD are the poorest 
algorithms with respect to these metrics while MOCell and OMOPSO are the most compelling 
algorithms to MOEFO on overall. 

The true Pareto front of problems and the Pareto front of algorithms have been given in Figures 6 
and 7 in order to reveal the convergence performance of every algorithm on the objective space. The 
corresponding box plots that show statistical best, worst, and mean performances have been given in 
Figure 8. Note that only a subset of problems, in which the proposed MOEFO has become the first 
algorithm, the second algorithm, and worse than the second algorithm with respect to the HV metric, 
has been given here. Refer to [7] for all the convergence and box plots that reveal the performance of  



Table 5. Comparative number of problems where proposed MOEFO algorithm performs, in order of representation, ‘superior(+)/equal(=)/inferior(-)’ than the 
competitors based on the measurement through Wilcoxon signed rank test. (Superior cases are highlighted with gray background color.) 

Metric Problem 
Family 

MOEFO vs. 
NSGA-II SPEA2 IBEA MOEAD MOCell GDE3 OMOPSO 

HV 

CEC09 5/3/2 4/3/3 5/3/2 4/1/5 8/2/0 9/0/1 9/0/1  
DTLZ 4/1/2 2/1/4 5/1/1 5/0/2 2/1/4 3/0/4 7/0/0  
LZ09 6/1/2 6/0/3 7/1/1 0/2/7 8/1/0 8/1/0 8/0/1 
MMF 20/3/1 13/1/10 15/0/9 17/1/6 12/2/10 13/6/5 18/1/5 
WFG 6/2/1 6/2/1 6/3/0 6/0/3 5/0/4 4/1/4 5/1/3  
ZDT 4/0/1 4/0/1 5/0/0 4/0/1 1/0/4 1/0/4 3/0/2  
Sum 45/10/9 35/7/22 43/8/13 36/4/24 36/6/22 38/8/18 50/2/12  

SPREAD 

CEC09 4/4/2 4/1/5 6/3/1 2/1/7 2/2/6 3/1/6 1/1/8  
DTLZ 7/0/0 2/0/5 5/1/1 7/0/0 3/3/1 2/3/2 1/3/3  
LZ09 4/2/3 3/3/3 5/2/2 3/0/6 2/2/5 1/2/6 1/0/8  
MMF 22/1/1 13/0/11 17/5/2 23/0/1 9/2/13 15/5/4 11/9/4  
WFG 9/0/0 7/0/2 9/0/0 8/1/0 3/2/4 6/1/2 4/3/2  
ZDT 5/0/0 3/1/1 5/0/0 4/1/0 0/0/5 3/0/2 2/0/3  
Sum 51/7/6 32/5/27 47/11/6 47/3/14 19/11/34 30/12/22 20/16/28 

EPSILON 

CEC09 6/1/3 6/3/1 8/1/1 5/1/4 9/0/1 6/2/2 7/1/2  
DTLZ 2/3/2 2/1/4 5/0/2 5/0/2 2/2/3 2/2/3 4/2/1  
LZ09 5/1/3 5/1/3 7/2/0 1/1/7 7/2/0 6/1/2 4/2/3  
MMF 20/2/2 14/0/10 15/0/9 19/2/3 3/14/7 14/6/4 9/8/7  
WFG 7/2/0 8/1/0 8/1/0 7/1/1 4/3/2 7/0/2 7/1/1  
ZDT 4/0/1 4/0/1 5/0/0 4/0/1 0/0/5 4/0/1 2/1/2  
Sum 44/9/11 39/6/19 48/4/12 41/5/18 25/21/18 39/11/14 33/15/16 

IGD 

CEC09 5/2/3 4/3/3 10/0/0 4/1/5 9/1/0 7/2/1 9/0/1  
DTLZ 3/2/2 2/1/4 5/1/1 4/1/2 2/2/3 2/2/3 5/2/0  
LZ09 5/1/3 5/0/4 7/2/0 0/2/7 7/1/1 5/1/3 3/2/4  
MMF 20/2/2 13/1/10 24/0/0 19/1/4 8/6/10 15/4/5 5/9/10  
WFG 6/2/1 6/1/2 7/1/1 7/0/2 4/3/2 6/1/2 3/4/2  
ZDT 4/0/1 4/0/1 5/0/0 3/1/1 1/1/3 4/0/1 2/1/2  
Sum 43/9/12 34/6/24 58/4/2 37/6/21 31/14/19 39/10/15 27/18/19 



 
Figure 6. The comparative convergence performance of the algorithms on CEC09_F2, DTLZ7, and 
LZ09_F9 problems. 



every algorithm on each problem by using each metric separately. The approximations to the true 
Pareto fronts show that MOEFO could competitively represent the true Pareto front of the problems. 

Finally, the problem-based and the average run times of the algorithms have been given in Table 6. 
The results show that CEC09 problem family requires the longest running time due to its higher 
dimensions (i.e., 30) to be optimized. In addition, it can be seen that OMOPSO requires the least 
running time while IBEA, MOEAD, and MOCell require the longest running time on overall. The 
proposed MOEFO algorithm, however, requires an admissible running time for these problem sets on 
overall. It has shown better performance than the competitors, except for OMOPSO, on CEC09 
problem family having higher dimensions, which shows MOEFO can handle high dimensional problems 
efficiently in terms of run time without sacrificing its optimization performance. 

Table 6. Comparative average running times of algorithms for each problem family (in s). 

5.5. Performance Evaluation on MaOP Benchmark Set 
5.5.1. Parameter tuning 

MOEFO is also explored on MaOPs where their characteristics are summarized in Table 2. To do that, 
the experimental findings obtained in [46] are taken for comparison in this study. So, the parameter 
settings used in [46] are adopted for this experimental task. Therefore, MOEFO is run 20 times with 
500,000 FENs. While the number of objectives is set to 5, the number of variables to be optimized is 
set to 10. In [46], NSGA-III and MOEAD algorithms are included for comparison. Six settings where the 
population size differs from each other are employed. The rationale behind is that the population size 
in NSGA-III depends on the number of the reference points. Speaking concretely, the population size 

in this algorithm is equal to �𝑂𝑂 + 𝐻𝐻 − 1
𝑂𝑂 − 1 � where 𝑂𝑂 denotes the number of objectives and 𝐻𝐻 denotes 

the spaces between reference points in the space. While 𝑂𝑂 is set to 5, the 𝐻𝐻 value ranges from 5 to 10 

in [46]. For example, the population size becomes (5+10−1)!
(10)!(5−1)!

= 1001, when 𝐻𝐻 = 10. Here, only the 

IGD metric is considered for performance assessment as done in [46]. 

5.5.2. Results 

The comparative results on MaOPs are given in Table 7. As stated earlier, proposed MOEFO is run 
separately for every population setting (the settings are labeled to be 𝑟𝑟 through 𝑓𝑓 in the table). The 
detailed results are also included in [7]. Every row of the columns 𝑟𝑟 through 𝑓𝑓 in Table 7 indicates the 
average IGD metric values obtained from 20 runs. The end column, however, gives the average IGD 
metric values calculated from the 6 populations settings conducted. From these IGD metric results, it  

Algorithm 
Problem Family 

CEC09 DTLZ LZ09 MMF WFG ZDT 
NSGA-II 167.41 2.28 3.72 25.33 1.64 2.36 
SPEA2 274.77 9.57 6.24 48.20 8.17 8.03 
IBEA 278.03 16.43 16.36 56.37 14.91 15.02 
MOEAD 258.31 2.37 6.94 112.21 1.12 1.29 
MOCell 309.64 5.39 6.53 88.13 4.00 7.20 
GDE3 118.14 4.24 1.45 25.14 2.33 2.63 
OMOPSO 55.33 2.49 0.89 21.43 0.97 1.18 
MOEFO 85.20 4.16 3.76 69.45 3.19 3.62 



 

 

Figure 7. The comparative convergence performance of algorithms on MMF16_l3, WFG1, and ZDT3 
problems. 

 



 

 

 

 

 

 

Figure 8. The comparative box plots on CEC09_F2, DTLZ7, LZ09_F9, MMF16_L3, WFG1, and ZDT3. 



can be seen that the proposed MOEFO is ranked as the first algorithm on MaOP1, MaOP3, MaOP4, 
and MaOP5 on overall, while it is ranked as the second algorithm on MaOP2 and MaOP6 problems 
where NSGA-III and MOEAD, respectively, are ranked as the first algorithm. As for the following 
problems (i.e., MaOP7 through MaOP10), MOEAD is ranked the first; whereas NSGA-III and MOEFO 
become very competitive to each other; but NSGA-III performs slightly better and thus is ranked as the 
second algorithm on overall. When considering the challenges of these problems, it can be concluded 
that MOEFO is more eligible to solve problems having multimodal, complicated PS, bias, or degeneracy 
characteristics; but it needs an additional effort to better cope with the problems with local 
degeneracy characteristic. 

Table 7. Comparative average IGD values of MOEFO, MOEAD, and NSGA-III algorithms under six 
different population size settings (a = 126, b= 220, c = 330, d = 495, e = 715, and f = 1001) for MaOP 
problems. 

Problems Algorithms 
Population Settings 

Average 
a b c d e f 

MaOP1 
MOEFO 17.98 17.33 17.01 16.82 16.72 16.70 17.09 
MOEAD 18.46 18.56 18.25 18.34 18.34 18.41 18.39 
NSGA-III 19.72 17.82 17.46 17.84 17.84 17.40 17.93 

MaOP2 
MOEFO 0.18 0.14 0.12 0.11 0.09 0.08 0.12 
MOEAD 0.17 0.16 0.16 0.15 0.14 0.14 0.15 
NSGA-III 0.11 0.09 0.09 0.08 0.08 0.08 0.09 

MaOP3 
MOEFO 0.29 0.25 0.23 0.21 1.12 2.21 0.72 
MOEAD 6.22 7.39 11.65 13.94 16.10 17.93 12.21 
NSGA-III 10.82 13.62 16.27 17.94 19.06 20.65 16.39 

MaOP4 
MOEFO 0.39 0.38 0.38 0.37 0.37 0.36 0.38 
MOEAD 0.47 0.46 0.45 0.43 0.41 0.40 0.44 
NSGA-III 0.39 0.38 0.38 0.37 0.37 0.36 0.38 

MaOP5 
MOEFO 0.26 0.25 0.25 0.25 0.25 0.25 0.26 
MOEAD 0.41 0.35 0.31 0.28 0.26 0.23 0.31 
NSGA-III 0.47 0.46 0.46 0.45 0.45 0.43 0.45 

MaOP6 
MOEFO 0.58 0.55 0.55 0.49 0.46 0.43 0.51 
MOEAD 0.31 0.26 0.20 0.17 0.15 0.12 0.20 
NSGA-III 1.19 0.69 0.71 0.74 0.60 0.51 0.74 

MaOP7 
MOEFO 0.54 0.48 0.44 0.40 0.37 0.32 0.42 
MOEAD 0.27 0.25 0.21 0.19 0.17 0.15 0.21 
NSGA-III 0.50 0.42 0.31 0.28 0.24 0.21 0.33 

MaOP8 
MOEFO 0.44 0.40 0.34 0.31 0.28 0.26 0.34 
MOEAD 0.27 0.23 0.19 0.17 0.15 0.14 0.19 
NSGA-III 0.46 0.37 0.34 0.27 0.25 0.20 0.32 

MaOP9 
MOEFO 0.45 0.36 0.31 0.27 0.24 0.22 0.31 
MOEAD 0.31 0.27 0.22 0.21 0.19 0.18 0.23 
NSGA-III 0.43 0.36 0.29 0.25 0.21 0.19 0.29 

MaOP10 
MOEFO 0.43 0.36 0.32 0.29 0.25 0.23 0.31 
MOEAD 0.28 0.26 0.22 0.20 0.18 0.17 0.22 
NSGA-III 0.38 0.30 0.26 0.23 0.20 0.17 0.26 



6. Conclusion 

In this study, the recently proposed promising EFO algorithm is modified for solving MOOPs. A 
Pareto-based approach is adopted, a new algorithm called Multi-Objective EFO (MOEFO) is introduced. 
Not only is EFO adapted to solve MOOPs and to give a set of non-dominated solutions as its output, 
but also the complexity of the algorithm is reduced for efficiency. The effectiveness of the proposed 
algorithm is explored on both multi-objective optimization problems (MOOPs) and many-objective 
optimization problems (MaOPs). While NSGA-II [8], SPEA2 [9], IBEA [10], MOEAD [11], MO-Cell [12], 
GDE3 [13], and OMOPSO [14] are used for MOOPs comparison; NSGA-III [18] and MOEAD [11] are used 
for MaOPs comparison. A well-known unconstrained MOOPs and MaOPs are used for fair comparison. 
The algorithms are compared by using the following four metrics for performance evaluation on 
MOOPs: HV, SPREAD, EPSILON, and IGD. Friedman’s ranking and Wilcoxon signed rank tests have been 
applied for every metric in order to statistically show overall and problem-wise performance, 
respectively. The statistical results show that MOEFO has outperformed its competitors on HV, 
EPSILON, and IGD metrics. Only in comparisons based on the SPREAD metric, it becomes the third best 
algorithm after OMOPSO and MOCell. As for performance evaluation on MaOPs, only the IGD metric 
is taken into consideration. The results show that the proposed MOEFO has an outstanding 
optimization performance on majority of the problems included. However, it needs an additional effort 
to be further improved for the problems having local-degeneracy characteristics. So, we invite the 
community to come up with improvement solutions, which shall be seen as a future direction of this 
study. 
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