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Abstract. Mobile devices have become a popular target for attackers,
whose aims are to harm the devices, illegally obtain personal information
and ultimately to reap financial benefit. In order to detect such malicious
attempts, security solutions based on static analysis are mainly preferred
due to resource-constraints of these devices. However, in general, static
analysis-based solutions are not very effective against new mobile mal-
wares and new variants of existing mobile malwares appear on a daily
basis. In this study, new features for static analysis are investigated in
order to detect mobile malwares. While studies found in the literature
mostly employ API calls and permissions, this current study explores
some novel structural features. Results show the relative effectiveness of
these features on malware detection. Furthermore, it is shown that these
features detect new malwares better than solely applying API-based fea-
tures.

Keywords: Android security, malware detection, static analysis, structural fea-
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1 INTRODUCTION

Android malware is one of the biggest threats today. With mobile devices hav-
ing become an integral part of modern lifes, attackers focus more and more on
harming mobile devices and stealing private information from them. New mo-
bile malwares are emerging every day. Kaspersky [1] reported that 884,774 new
malicious applications appeared in 2015 alone, three times more than the num-
ber of new mobile malwares seen in 2014. According to the recent McAfee Labs
Threats Report [2], the number of mobile malwares is still on the rise.

There are two main approaches to the detection of mobile malwares : static
analysis and dynamic analysis. Static analysis is generally preferred over dy-
namic analysis due to its lower overhead on mobile devices. Therefore, a sig-
nificant amount of work has been proposed on static-based malware detection
for Android devices over the last five years, and different features have been
investigated in different approaches.
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In the literature, permissions and API calls are among the most used features
for static analysis [3]. However, the structural features of an application have
not been explored as part of the proposed approaches, hence it forms the main
aim of this current study. It can be seen from the literature that the structural
information of portable executables has a positive impact on malware detection
[4]. Therefore, this current study investigates the use of structural features of
applications on mobile malware detection. To the best of our knowledge, some
of these proposed features are novel and have not been the subject of previous
studies. The proposed system is also applied to new malwares in order to see its
capability of detecting new malwares and new variants of malwares. In recent
years, there has been a significant increase in Android malware variants, much
more than new malware families [5]. Therefore, detecting variants of existing
malwares is an important characteristic of an anti-malware system.

To summarize, the contributions of this paper are as follows :

– SAFEDroid, an Android malware detection system based on static analysis,
is introduced.

– Rigorous analysis of the original features of SAFEDroid is conducted in order
to increase the accuracy of the system.

– SAFEDroid is evaluated on new variants of existing malwares as well as
new malwares in order to demonstrate the impact of the original features
employed by the proposed system.

The remainder of this paper is organized as follows. Section 2 discusses the
related works in the literature, and outlines existing malware detection systems
based on static analysis together with the features they employ. Section 3 intro-
duces the features and classification algorithms employed in this study. Section 4
evaluates the results and also discusses the limitations of the proposed approach.
Finally, the study is concluded in Section 5.

2 RELATED WORK

Static analysis is the most employed technique on mobile devices due to its
efficiency. One of the early studies relying on static analysis is by Kirin [6]
which detects certain types of malware by evaluating the configuration of an
application against a collection of security rules. These rules are defined by using
permissions and action strings in Intent filters extracted from the manifest file.
Even though it is not a complete solution for the problem, it was shown that
it could mitigate certain types of malware. Stowaway [7] detects overprivileged
apps by analyzing API Calls. ComDroid [8] detects application’ vulnerabilities
by analyzing inter-application communications; with their analysis showing that
Android applications are vulnerable to attack by other applications.

RiskRanker [9] proposed a two-level analysis. High-risk and medium-risk ap-
plications are determined in the first-order analysis, and applications employing
obfuscating, encryption or dynamic class loading techniques are extracted among
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these risky applications in the second-order analysis. Only static analysis is em-
ployed to identify applications employing suspicious behaviors. DroidAnalyzer
[10] employs static analysis in order to detect the presence of root exploits, and
identifies the potential risks of related apps. Droid Analytics [11] generate sig-
natures at the app/class/method level, hence it can detect 0-day repackaged
malwares.

In another approach for malware detection, Drebin [12] uses hardware and
app components, permissions, API calls and network address as features in or-
der to apply machine learning techniques. Drebin not only classifies the ap-
plications, but also produces explanations for the detection model. Similarly,
DroidAPIMiner [13] achieves a high detection rate and low false positive rate
by using kNN classifier on API calls. They firstly remove API calls invoked by
third-party packages, and then consider only top APIs with the highest difference
between malware and benign apps in training. Therefore, it is not susceptible to
evasive attacks that add more benign APIs to the code in order to evade detec-
tion. SafeDroid [14] is also based on the top distinguished API calls extracted
from dex files. Although our study has used the same acronym as SafeDroid
[14], it is an independent work which evaluates not only the effect of API calls
but also the effect of structural features on malware detection. This replication
occurred purely coincidentally without realization on the part of the authors.
Another ML-based approach firstly groups applications with similar functional-
ities in clusters, then employs kNN classifier in order to detect mobile malwares
[15]. The performance of the approach is shown to be better than AndroGuard
[16]; however, it does not perform well on the detecting of updated attacks such
as BaseBridge and DroidKungFu.

The usage of ML-based techniques for mobile malware detection is increasing.
One of the recent studies employs Bayesian classifiers to distinguish malicious
from benign applications [17]. They extract features based on API calls, system
and Android commands, permissions in the manifest file, and other information
such as the usage of encryption, and the presence of a second .apk file. Mutual
Information calculation is employed to rank features, and as a result the top 25
features are outlined and used in training. They also show that as the training
sample set increases, the performance of the classifier on the same feature set
also increases. A recent study employed different machine learning techniques,
including deep learning to the problem [18]. Another recent work evaluates ML-
based mobile malware detectors [19].

One of the studies in the literature shows similarity to this current study,
employing data mining algorithms on static features obtained from apk, dex, and
XML files of an application [20]. However, due to the unavailability in 2010 of
malware datasets, the proposed model was not applied for malware classification.
Its evaluation is carried out to differentiate between game and tool applications.
Moreover, only one feature from [20] is used common to this current study.

To summarize, the studies found in the literature mainly use permissions
and API calls for static analysis-based malware detection. Application metadata
has also been proposed as complementary to static and dynamic analysis [25].
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Static Tools Purpose Features

Kirin [6] mitigating certain types of permissions
malwares action strings

Stowaway [7] determining overprivilege API calls
action strings

ComDroid [8] detecting apps communication permissions
vulnerabilities intents

components

RiskRanker [9] risk analysis for detecting data flow analysis
0-day malwares control flow analysis

suspicious activities

DroidMat [15] detecting malwares permissions
intents
components
API calls

Droid Analytics [11] generating signatures API calls
detecting 0-day repackaged malwares

DroidAPIMiner [13] detecting malwares API calls

Bayesian [17] detecting malwares permissions
API calls
commands

Drebin [12] detecting malwares permissions
producing explanations for the model intents

components
API calls
network addresses

DroidAnalyzer [10] detecting the presence of root ex-
ploits

API calls

keywords

Anastasia [18] detecting malwares permissions
intents
API calls
system commands
malicious activities

ML-based detectors [19] detecting malwares basic blocks from CFG
evaluating ml-based detectors

Resource Usage-based
[21]

detecting malwares resource usage

Metadata-based [22] detecting malwares permissions
API calls
metadata

ADRoit [23] detecting malwares permissions
metadata

AndroDialysis [24] detecting malwares permissions
intents

Table 1. Existing Android Static Analysis Tools
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Recently, studies that use metadata for malware detection [23][22] have been
introduced. A brief survey in [3] provides further information on the features
used for mobile malware detection. The static analysis tools employed in the
literature are outlined and sorted according to their publication date in Table 1.

3 METHODOLOGY

In this study, a static analysis tool is developed that is based on API calls and
the structural features of applications. Figure 1 illustrates a simplified system
architecture of SAFEDroid.

• code-based 
• manifest-based 
• file-related 
• distinct API calls 

extracting  features 

j48 

classification 

Fig. 1. Simplified schema of the proposed approach

First of all, a dataset consisting of malicious and benign malwares is con-
structed. Then, a rigorous study is conducted on the dataset in order to select
the right features to increase the detection module’s accuracy. The choice of
which characteristics of an application can be used for machine learning is very
important, and must contain sufficient information to allow the fundamentals
to be developed. However, irrelevant or an excessive number of features could
degrade the performance of the learning algorithms. Based on feature analysis,
the feature subset, which is believed to discriminate malicious applications from
goodwares, is selected and extracted. Machine learning techniques are applied
for the classification of applications by using this feature subset. Finally, the
model produced is evaluated by using a new dataset obtained from Drebin [12].
The results support the researchers’ hypotheses that the structural features of an
application are indicative of malicious behavior, and could detect new malware
variants. Each step of the proposed approach and the experimental results are
presented in the subsequent sections.

3.1 Feature Selection

In the literature, API calls and permissions of applications are features that
are extensively employed for static analysis in mobile malware detection [3]. It
is shown that the systems relying on API calls-based features achieve better
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detection performance than systems using a permission-based feature set [13].
Moreover, the usage of API and permission-based features together does not en-
gender improvements over the usage of only API-based features [26]. Therefore,
this study has not included permission features; the top distinguished API calls
have been added to the features used. In addition to API calls, the proposed sys-
tem in this study also extracts some structural features of an application based
on analysis of malwares and goodwares. The features employed in this study
are classified into three groups : code-based, manifest-based, and file-related fea-
tures. All of these features are summarized in Table 2.

Code-Based Features The features in this group are extracted from the
application code. The following three features in this group have previously been
used for the detection of malwares in other studies : DexClassLoader, Crypto
API usage and, API calls. As far as the researchers of this study are aware, the
other features are being employed for the first time in this study.

– DexClassLoader Android gives developers an opportunity to load and
use classes in runtime. These files can be dynamically loaded from a remote
server or from any path of the device. Surprisingly, according to analysis, the
percentage usage of dynamic code loading in the malware dataset is much
less than its usage in the benign dataset. It was noted that almost half of the
benign applications use dynamic code loading. This result is also consistent
with the analysis of one million apps submitted to Andrubis [27]. There
is a substantial increase in the number of applications using the updating
techniques, especially dynamic class loading [28]. It could be concluded that
dynamic code loading alone may no longer be an indicator for malicious
behavior due to its rising popularity among goodwares as well.

– Crypto API Attackers mainly use cryptography in order to evade static
analysis. On the other hand, its usage statically among goodwares has also
increased over the last few years [27]. Analysis conducted in this study also
supports the increasing usage of crypto API in benign applications.

– Goto The goto statement could be inserted into code in order to evade
signature-based detection tools. By using goto statements, attackers can
change the order of the code, but preserve the code execution sequence at
runtime.

– Annotation Annotations are types of metadata that can be added to the
code, but have no effect on the runtime. Our analysis shows that benign
applications tend to use many more annotations than malicious applications.

– Methods This feature represents the number of methods in an applica-
tion package. Benign applications appear to use many more methods than
malwares.

– Classes This feature represents the number of classes in an application pack-
age. The number of classes seems to be much higher in benign applications
than malwares.

– Used Permissions The application authors generally request more permis-
sions than they use. Since used permissions give more information about an
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application, the number of used permissions are also taken into account in
this study. PScout’s API-permission list [29] are used in order to extract the
real permission list of applications. Recently, a few studies in the literature
analyze and employ the combination of used permissions for malware detec-
tion [30][31][32]. However, to the best of our knowledge, the number of used
permissions employed in this current study is a first.

– Used Dangerous Permissions This feature represents the used dangerous
permissions by an application and to the best of knowledge of the researchers
of this study it is also a first to be employed.

– API Call The top distinguished API calls, whose usage in the malware
dataset is higher than the benign dataset, as in DroidAPIMiner [13], are
extracted.

Manifest-Based Features Every Android application must have a manifest
file (AndroidManifest.xml) that contains essential information about the appli-
cation such as information about the package and application components such
as activities, services, broadcast receivers, and content providers. In this study,
only the number of permissions listed in the file, and the size of the manifest file
is used.

– Permissions This feature represents the number of permissions requested
in the manifest file. According to analysis in this study, benign applications
use 8 permissions on average, whereas malwares use 14 permissions. At-
tackers generally use more permissions in order to obtain the control of the
device. They can also obtain permissions in advance for use in the dynami-
cally loaded code at runtime [33]. Permissons are the most used features in
static analysis [3]. While studies mainly extract the permissions listed in the
manifest file [18][20], to the best of knowledge of the researchers the number
of permissions is not explicitly used as a feature. Only in [34] the count of
xml elements in the manifest file besides permissions is also considered.

– Dangerous Permissions This feature represents the number of danger-
ous permissions requested in the manifest file. It is shown that malwares
generally request more dangerous permissions than benign apps [35].

– Lines Another important feature about the manifest file is the size of the
file which is evaluated by the number of lines here. The researchers observed
that benign applications mostly generate well-written manifest files with
more information. Research experimentation for this study revealed that
the average line count of the manifest files of goodwares is 81, whereas it is
49 for malwares.

File-Related Features Android application is similar to jar file and it con-
tains class files and hierarchical directories. Besides, resource files used by appli-
cations are stored in the resource directory. These features might have a positive
effect in order to classify samples. To the best of our knowledge, the file-related
features have not been included in previous studies.
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Category Features Descriptions Previous
Works

Code-Based

DexClassLoader DexClassLoader API Usage Yes

Crypto API cryptographic API usage Yes

Goto number of goto statements No

Annotation number of annotations No

Methods number of methods No

Classes number of classes No

Used Permissions number of used permissions No

Used Dangerous number of used dangerous No
Permissions permissions
API Calls API calls usage Yes

Manifest-Based

Permissions number of requested permissions Yes [34]

Dangerous Permissions number of requested dangerous
permissions

No

Lines number of lines of the manifest file No

File-Related

File Size size of the application (bytes) Yes [20]

Files number of files No

Directories number of directories No

Resource Files number of files stored in resource
directory

No

Table 2. Category of features

– File Size This feature represents the file size of an application measured in
bytes. The researchers found that benign applications generally have larger
file sizes than malicious applications. In the literature, this feature has been
used to differentiate game applications from tools and, has been suggested
for use in malware detection [36].

– Files This feature represents the number of files in an application package.
Benign applications appear to have many more files than malwares.

– Directories This feature represents the number of directories in an ap-
plication package. It is observed that benign applications have many more
directories in their packages.
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– Resource Files This feature indicates the number of resource files used by
an application. The resources in Android could be used for various reasons
such as language support and, providing images for UI. Applications in the
benign dataset are observed to use more resources than those in the malware
dataset.

When the correlation between the features and the class labels (i.e. benign
or malicious) is analyzed, all non-zeros values are observed. The smallest abso-
lute correlation value (0.14) belongs to Lines feature. However when principle
component analysis (PCA) is carried out, it is seen that even this feature has
considerable weight for the eigen vector corresponding to the 5th highest eigen
value. When the correlation among the features are analyzed, it is observed that
some features are highly correlated as expected, such as Methods and Classes.
However in general, the cross-correlation matrix shows that the feature set ex-
hibits low inter-dependency, even with feature couples having zero correlation,
such as DexClassLoader and Dangerous Permissions.

3.2 Classification

All applications are firstly disassembled into .smali files using Apktool [37] and
then features are extracted. In this stage well-known machine learning algorithms
are applied in order to classify applications as either benign or malicious based
on these features. A decision tree algorithm is used that is named J48 [38],
which is an implementation of the C4.5 algorithm. Weka tool [39] is used in
the application of the C4.5 algorithm for this study. Other well-known machine
learning algorithms such as kNN and SVM are also evaluated in this study.
However since J48 produces the highest level of accuracy, it was elected to be
employed across all other relevant experiments of this study. J48 is one of the top
ten data mining algorithms [40], which also allows us for interpretation of the
tree in order to see the features that are best separating malicious and benign
applications.

In training, MalGenome dataset is used for representing malicious applica-
tions. This dataset contains 1260 malwares from 49 malware families. A benign
dataset consisting of 1260 applications downloaded from Google Play was also
created. A tool based on Android Market API [41] was utilized in obtaining
the benign samples from Google Play. Particular attention was paid to select
applications downloaded more than 5 million times to ensure that they were
not malicious. Furthermore, they were checked with VirusTotal [42] in order to
ensure these samples are not malware. Applications are only included in the
dataset if they are not detected by any of the antivirus solutions. Hence the
benign dataset is reduced to 978 applications. However the benign dataset is
aimed to be extended in the future. In order to see whether or not a generated
model could detect new attacks, an evaluation of the models using the Drebin
dataset [12] was also conducted. This public dataset contains 5,560 applications
from 179 different malware families. Hence, it introduces new malware fami-
lies that do not exist in MalGenome; however it also contains some samples
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from MalGenome too. In the experiments conducted for this study, the malware
samples also common to MalGenome were extracted to specifically evaluate the
detection performance of the generated models on unknown malwares.

4 EVALUATION

In order to evaluate the performance of each model, the following metrics were
employed: true positive ratio; false positive ratio; and accuracy. True positive
ratio shows the ratio of correctly classified malicious applications (TP: true pos-
itives) to all malicious applications in the dataset. False positive ratio represents
the misclassified applications as malicious (FP: false positives) to all benign
applications in the dataset. TN represents true negatives, FN represents false
negatives in the equations below.

True Positive Ratio =
(TP )

(TP + FN)
(1)

False Positive Ratio =
(FP )

(TN + FP )
(2)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

Firstly the classifiers were trained by using only API calls which are shown
to be very effective against detecting mobile malwares [13]. The effect of the
number of API calls can be seen in Figure 2. The result seen is consistent with
DroidAPIMiner’s outcome in that 169 API calls produce the highest accuracy.
Therefore, 169 API calls were employed for the remainder of the experiments.
The top 20 API calls having the highest difference between malware and be-
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nign datasets are also given in Figure 3. The top 20 APIs shows similarity
with DroidAPIMiner’s results [13], for which analysis was performed on a larger
dataset.

0 10 20 30 40 50 60 70 80 90 100

Landroid/graphics/CornerPathEffect;-><init>()
Landroid/widget/RelativeLayout;->setPressed()

Landroid/widget/RelativeLayout;->onTrackballEvent()
Landroid/webkit/WebChromeClient;->onReceivedTitle()

Ljava/lang/Process;->waitFor()
Landroid/widget/TextView;->getTextSize()
Ljava/lang/Process;->getOutputStream()

Landroid/app/ActivityManager;->getRunningServices()
Landroid/util/AttributeSet;->getAttributeUnsignedIntValue()

Landroid/view/animation/AlphaAnimation;->startNow()
Landroid/widget/RelativeLayout;->onDetachedFromWindow()

Landroid/app/Service;-><init>()
Landroid/telephony/TelephonyManager;->getLine1Number()
Landroid/widget/RelativeLayout;->onAttachedToWindow()

Landroid/net/NetworkInfo;->getExtraInfo()
Landroid/content/pm/PackageManager;->getInstalledPackages(I)
Landroid/telephony/TelephonyManager;->getSimSerialNumber()

Landroid/app/Service;->onCreate()
Landroid/app/Service;->onDestroy()

Landroid/telephony/TelephonyManager;->getSubscriberId()

Malware Benign

Fig. 3. The top 20 distinguishable API calls

Classifiers were also trained using different combinations of features and
the results compared. F1 represents the code-based features except for API
calls, F2 represents manifest-based features, F3 is used for file-related features,
and F4 indicates the most distinguishable API calls. Based on the outcome of
DroidAPIMiner [13], 169 API calls were employed. Two training schemes are
employed : cross-validation and 66% percentage split.

Figure 4 shows the percentage of correctly classified applications. As can be
seen, manifest-based and file-related features do not perform as well as code-
based features in distinguishing malicious from benign applications. The combi-
nation of code-based features and API calls produces the lowest error rate. The
performance of this combination is quite close to the combination of all features.
Hence, both combinations are evaluated on the new malwares. The detection
and false positive ratios of both combinations are exhibited in Table 3.

Feature Sets DR FPR

F14: Code-based and API calls 98.4% 1.8%

FAll: All 98.3% 2.0%
Table 3. Performance of classifiers
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Finally, in order to see the performance of this approach against new variants
of existing malwares and new malwares, evaluation was also conducted against
the Drebin dataset [12], which is a larger dataset than MalGenome [43]. It should
be noted that, all applications that exist in MalGenome were removed from the
test dataset before the evaluation took place. The results are presented in Ta-
ble 4. In particular, the malware families considered in training are shown. The
results show that the proposed approach effectively detects new variants of ex-
isting malwares. While API-based approach could not detect some families at
all, the new features introduced here make them distinguishable from benign
applications. On the other hand, the proposed approach is ineffective against
Plankton family, which is a type of update attack. This family could not be
detected effectively by applying API-based features as well. Other than Plank-
ton family, we could say that the proposed approach considerably increases the
accuracy against new variants of existing malwares and new malware families.

4.1 Limitations

An attacker who knows that the device is protected with SAFEDroid could
change its code while preserving its malicious behavior in order to evade the
system. For example, it could increase the size of the manifest file and the file
size in order to look less suspicious. Actually, it is the common vulnerability for
any detection system based on static analysis. Attackers always employ evasive
techniques to be successfully installed and run on the device. It is the nature of
an arms race mechanism between virus and antivirus systems. It should however
be emphasized that the attacker has to change critical features employed in this
study in order to evade SAFEDroid, which could cause both a decrease in the
impact and an increase in the cost of the attack. For example, an attacker could
change the number of permissions requested in the manifest file, and seem non-
overprivileged, but then the attacker might not be able to run dynamically loaded
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Family Family Size API Code-based and API All

Adrd 24 91.67% 91.67% 91.67%

BaseBridge 22 63.64% 63.64% 72.73%

Bgserv 1 0.00% 0.00% 100.00%

DroidDream 34 79.41% 94.12% 94.12%

DroidKungFu 193 90.76% %94.81 %95.34

FakePlayer 11 0.00% 90.91% 90.91%

Geinimi 25 80.00% 91.30% 91.30%

GGTrack 2 0.00 % 100.00% 100.00%

GinMaster 338 91.41% 96.15% 96.15%

GPSpy 2 0.00% 100.00% 100.00%

JiFake 28 0.00% 89.29% 89.29%

KMin 96 100.00% 100.00% 100.00%

Nickspy 9 77.78% 88.89% 88.89%

Plankton 614 29.48% 2.12% 14.50%

Spitmo 10 100.00% 100.00% 100.00%

TapSnake 2 50.00% 100.00% 100.00%

Yzhc 15 100.00% 100.00% 100.00%

Zitmo 13 69.23% 76.92% 76.92%

Zsone 2 50% 100% 100%

DREBIN 4432 42.95% 70.21% 61.86%
Table 4. Detection ratio on new malwares

code at runtime. An attacker could also uses less goto statements by not using
evasion techniques such as code reordering, but then might need to use other
evasion techniques in order to hide its malicious code. Furthermore, an attacker
could not evade API-based features by increasing the size of benign features,
since API calls considered here are the most distinguishable API calls from
benign applications in malware applications [13]. To summarize, an attacker,
who pursues to achieve his goals no matter what happens, could avoid detection
by SAFEDroid by changing the features, but that would come with a cost for
the attacker.

5 CONCLUSIONS

There have been many studies proposed for malware detection on mobile devices.
Many of these approaches are based on static analysis due to resource constraints
of these devices. Those approaches mainly employe API calls and permissions
as features. In this current study, structural features such as the number of
methods/classes, the size of the application, and the number of goto statements
are explored for the purpose of malware detection. In particular, three groups of
features are analyzed : code-based, manifest-based, and file-related. The analysis
shows that code-based features together with API calls achieve a high detection
rate with a low false positive ratio. Furthermore, these novel features are shown
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to be effective against new malwares and new variants of malwares. The results
obtained were an improvement on solely applying API-based features.
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Le Traon, et al. Empirical assessment of machine learning-based malware detectors
for android. Empirical Software Engineering, 21(1):183–211, 2016.

20. Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated Static Code Analysis
for Classifying Android Applications Using Machine Learning. 2010 International
Conference on Computational Intelligence and Security, pages 329–333, December
2010.

21. Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio.
Acquiring and analyzing app metrics for effective mobile malware detection. In
Proceedings of the 2016 ACM on International Workshop on Security And Privacy
Analytics, pages 50–57. ACM, 2016.

22. Tao Ban, Takeshi Takahashi, Shanqing Guo, Daisuke Inoue, and Koji Nakao. In-
tegration of multi-modal features for android malware detection using linear svm.
In Information Security (AsiaJCIS), 2016 11th Asia Joint Conference on, pages
141–146. IEEE, 2016.

23. Alejandro Mart́ın, Alejandro Calleja, Héctor D Menéndez, Juan Tapiador, and
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