
S. Sen Sequence-Based Masquerade Detection for Different User Groups

RESEARCH ARTICLE

Sequence-Based Masquerade Detection for Different User

Groups

S. Sen∗

Department of Computer Engineering, Hacettepe University, 06800, Ankara, TURKEY

ABSTRACT

Insider threats are one of the biggest threats that organizations are confronted with today. A masquerader who impersonates

another user for his malicious activities has been studied extensively in the literature. The approaches proposed on

masquerade detection mainly assume that masquerader behavior will deviate from the typical behavior of the victim. This

research presents a rigorous evaluation of sequence-based approaches based on this assumption. The main idea underlying

sequence-based approaches is that users type similar commands, in a similar order, every time to do a specific job and,

these similarities could distinguish users from others. Sequence-based approaches in the literature only consider commands

typed in a specific order, at all times. In this research, we also take into account typing similar commands in a command

sequence, but in an unordered way, in the newly proposed method, MUCS. We compare this new technique with another

sequence-based approach called MOCS, and a command-based approach called MC. These techniques are evaluated with

varying parameters in order to explore how the order of commands, the variations in a command sequence, and the variety

of commands affect masquerade detection. Furthermore, the performance of these methods on different types of users

and masqueraders is analyzed. We explore what kind of users are easily distinguishable from others, and what kind of

masqueraders are difficult to detect. Copyright c© 2010 John Wiley & Sons, Ltd.

KEYWORDS

sequence-based approaches ; masquerade detection ; insider threats ; naive Bayes classification ; bag-of-words ; user groups

∗Correspondence

Department of Computer Engineering, Hacettepe University, 06800, Ankara, TURKEY

Received . . .

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 1

DOI: 10.1002/sec

Prepared using secauth.cls

SECURITY AND COMMUNICATION NETWORKS

Security Comm. Networks 2010; 00:2–23

DOI: 10.1002/sec

1. INTRODUCTION

A malicious insider is a trusted insider who abuses his

position of trust to disrupt operations, corrupt data, ex-

filtrate sensitive information, or compromise an IT system,

thus causing loss or damage [1]. It is one of the biggest

threats that organizations are confronted with today.

46% of the organizations that participated in a survey

conducted by CERT (Computer Emergency Response

Team), expressed that damage caused by insider attacks are

more severe than outsider attacks [2]. Malicious insiders

are also recognized to be within the top threats of cloud

computing [3].

Masqueraders are among the insider attacks that have

been discussed extensively over the last decade. A

masquerader impersonates another user in order to carry

out his malicious activities. He might not however, even

have full knowledge of the system [4]. In order to

detect these attacks, many approaches have been proposed

in the literature, such as text-mining, HMM (hidden

Markov model), naive Bayes, sequence-based, SVM

(support vector machines), information-theoretic based

and other similar means [5]. Most of these approaches

show comparable results in terms of accuracy. In these

approaches, the main underlying assumption is that a

masqueraders’ behavior will likely deviate from the

victim’s typical behaviors.

In this research, we investigate the use of sequence-

based approaches on masquerade detection. In the

literature, there are some sequence-based approaches

proposed using the SEA dataset [6], which is widely used

in masquerade detection. Even though this dataset consists

of an ample amount of commands for 70 different users,

these commands might not be typed in order due to the acct

auditing mechanism used to collect user data. Since this

may adversely affect the results of any proposed sequence-

based approaches [7], we use both the SEA dataset and the

Greenberg dataset [8] in this study.

This research proposes a rigorous investigation of

sequence-based approaches for masquerade detection.

It explores the effects on masquerade detection of

contiguous/non-contiguous and ordered/unordered com-

mands typed by users. We employ naive Bayes classifi-

cation in three main different settings in order to show

the effects of command sequences to differentiate a user

from others. One technique, called MC (Matching of

Commands) is an application of naive Bayes which uses

only self-training data due to privacy issues. Although

there are approaches using two-class naive Bayes in the

literature [9][10], in this study we have used MC for

comparison with the MOCS (Matching of Ordered Com-

mand Sequences) and MUCS (Matching of Unordered

Command Sequences) methods. While the method MC

is employed on user commands, the newer MOCS

and MUCS methods use the bag-of-command sequences

approach. The main idea underlying these approaches is

that users type similar commands in a similar order every

Copyright c© 2010 John Wiley & Sons, Ltd. 2

Prepared using secauth.cls [Version: 2010/06/28 v2.00]

S. Sen Sequence-Based Masquerade Detection for Different User Groups

time to do a specific job and, these similarities could

distinguish users from others.

Sequence-based approaches in the literature only

consider commands typed in a specific order at all times.

In this research, we also take into account typing similar

commands in an unordered way in a command sequence,

using the newly proposed method of MUCS. In both

the MOCS and MUCS methods, some changes in the

commands typed in a sequence are considered with a

tolerance parameter. This research presents a rigorous

evaluation of these three methods in order to investigate

sequence-based approaches for masquerade detection

thoroughly. We explore how the order of commands, the

tolerance parameter, the variety of commands, and the

different user groups affect masquerade detection. Finally

we compare the proposed approaches with some other

techniques in the literature. As it is shown in the results,

the new approach, MUCS with tolerance, outperforms

the naive Bayes classification technique, one of the most

successful and applied approaches in the literature.

In this research, we use the SEA dataset for comparison

with other approaches in the literature. We also employ

the Greenberg dataset owing to its appropriateness for

sequence-based approaches. This dataset includes four

different types of users that differ widely to that used

in the Schonlau dataset: novice users, non-programmers,

computer scientists and experienced users. Therefore it

allows us to analyze the performance of our approaches on

different user groups/masqueraders. We explore what kind

of users are easily distinguishable from others, what kind

of masqueraders are difficult to detect, and such like. The

performance of each technique demonstrates that different

techniques could be more suitable for different users. As

far as we know, this is the first attempt to analyze user

groups from the masquerade detection point of view.

The paper is organized as follows. Section 2 presents an

overview of the related work in the area of masquerade

detection. The details of the datasets used in the

experiments are presented in Section 3, and an overview

of the naive Bayes classification is given in Section 4.

The different experimental settings used in this study are

defined in Section 5, and the results are exhaustively

discussed in Section 6. Finally, the conclusions of this

study are presented in Section 7.

2. RELATED WORK

In the last decade, masquerader detection has been studied

using various techniques. Most of these studies use the

Schonlau dataset (SEA dataset) introduced in [11], which

consists of command lines typed by users. Schonlau et.

al. applied six different approaches (uniqueness, Bayes

one-step Markov, hybrid multistep Markov, compression,

sequence-match, and IPAM- Incremental Probabilistic

Action Modeling) to this publicly available dataset [6]

in order to detect masquerade users. However the results

show very low detection rates (between 34.2% and 69.3%),

with the false positive rate between 1.4% and 6.7%.

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 3

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

Compression-based approaches [12][13][11] are based

on the premise that data from the same user compresses

more readily than mixed data from different users

[12]. A compression-based classification algorithm called

Normalized Compression Distance (NCD) is applied in

[12] and is claimed to be used as a universal similarity

measure different to the Compression method in [11].

The NCD approach is compared with the six approaches

proposed by [11]. The results show that the false alarm

rate produced by NCD is generally less than 2%, which

is highly desirable in comparison with other approaches.

However it costs a relative increase in missing alarms.

In a study by [9], the naiye Bayes classification is

applied to the masquerade detection problem and is

compared with other detection techniques given by [11]. It

is shown that the naive Bayes classification shows a much

better performance than other approaches. Moreover,

Maxion and Townsend introduce a new experiment setting

called 1v49, which also uses the Schonlau dataset. This

setting provides a better environment for evaluating

proposed approaches, since it includes more masquerader

styled data than the SEA dataset. They also discuss

why some attackers are more successful and why some

users are harder targets. The naive Bayes classification

approach has been applied to the Greenberg dataset which

includes command lines enriched with flags, arguments,

and information about aliases in [10]. The results show

that enriched command lines bring about an improvement

in masquerade detection. They also apply naive Bayes

with updating thresholds in order to overcome the

concept drift issue, and to decrease false positives [7].

Sen [43] has recently proposed an approach based on

instance weighting in order to update user profiles, which

outperforms the instance selection approach [7] in some

scenarios. Yung [14] updated user behaviors with feedback

from users in order to increase detection performance. A

recent approach using naive Bayes is proposed in [15],

where the detection of an attacker is deferred for 2-3

blocks.

The proposed approaches to detect masqueraders

usually use multi-class training (two classes in this

problem). However two-class training data might not

always be available due to privacy issues. Therefore Wang

and Stolfo apply one-class training to the problem and

show that one-class training works as well as multi-class

training [16]. This approach has other advantages, such as

collecting less data, and more efficient training. Salem and

Stolfo have also applied one-class SVM to the problem,

and compared it with the Hellinger distance-based user

behavior profiling technique [17]. Chen and Dong apply

one-class classification using length statistics of emerging

patters (OCLEP) [18]. The method is based on the

assumption that two command blocks have long emerging

patterns if both blocks are typed by the same user. It is

shown that OCLEP achieves slightly better performance

than one-class SVM. The most recent approach using one-

class learning algorithm (Bayesian) is shown to outperform

most previous one-class approaches [19].

4 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

The main assumption underlying the detection of such

malicious users, is that the masqueraders’ behavior will

deviate from the typical behavior of the normal users. The

researchers mainly use command frequencies (multivariate

Bernoulli or multi-nominal model) or command transitions

in order to define the user behaviors. Some approaches

consider command sequences for user profiling. Lane and

Brodley use sequence similarity where adjacent matches

have a higher score to detect anomalous behavior on their

own small dataset [20]. Latendresse generates a context-

free grammar by using Sequitur algorithm [22], in order

to extract repetitive sequences of commands executed

for global user profiling [21]. Zhou et al. also use the

same method and compare it with the Self-Signature

approach, combined with the Uniquness approach in

[23]. They show that by using repetitive 2-grams beside

command frequencies, an improvement is shown in the

statistical methods. Oka et. al. propose a new approach,

called Eigen co-occurence matrix, which uses principal

component analysis (PCA) to model command sequences

and extract their significant features [24]. The model

correlates two events with their frequency and the distance

between them in a given maximum interval size (might

not be adjacent to each other). It is shown that the ECM

method outperforms many existing approaches. A method

which takes into account both frequency and transition

characteristics of commands, called n-gram Square Root

Term Frequency Inverse Document Frequency (n-gram

STF-IDF), is introduced in [25].

Seo and Cha [26] apply SVM with sequence-based

string kernel which compares strings according to the

non-contiguous sequences of substrings they contain. The

results demonstrate that string kernel shows a slightly

better performance than the RBF (radial basis function)

kernel of SVM. The sequence alignment technique, which

aims to find the maximal length of lexically similar

subsequences of two strings and is generally used in

bioinformatics, is adapted to the masquerade detection

domain [27]. Even though the performance of this

approach is comparative with the naive Bayes approach

with updating, the computational requirements of this

approach can be an issue. Another important contribution

made by Coull and Szymanski, is the discussion of

command grouping where similar commands ending up

in the same group can be substituted. Sodiya et al. [28]

improves the effectiveness of the sequence alignment

algorithm by computing the best score for each user,

however the results are only discussed on a small dataset.

A similar approach, which uses sequence alignments to

generate a profile hidden Markov model (PHMM), is

proposed in [29]. Since the Schonlau dataset does not

include session times, they also generate a synthetic dataset

in order to show the performance of PHMM. A recent

approach, based on Markov chain with states of variable

length sequences, is proposed in [30]. Even though it

produces better results by using less time and space than

some fixed length approaches, it shows similar results with

the naive Bayes approach with low false positive rates.

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 5

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

There are recent approaches which focus on evading

masquerade detection. Tapiador and Clark investigate

how a resourceful masquerader can successfully evade

detection while still accomplishing his goals [31]. They

also investigate how to obfuscate user profiles against

profiling attacks [32]. Four attacks are introduced in

order to evade naive Bayes and HMM-based masquerade

detection algorithms [33]. In [34], masquerade attacks are

generated synthetically, based on the profile of a target

victim, in order to evade detection.

Even though we focus on masquerade detection based

on command lines typed by users, as other studies in

the literature using the Schonlau and Greenberg datasets

have done, there are other useful characteristics of users

which might be used for masquerade detection. Garg

et al. examine user profiling in GUI based systems by

considering mouse coordinates, keyboard activities, and

mouse clicks, besides just looking at commands [35].

Nguyen et al. monitor system call activities in order to

detect insider threats and examine the relationship between

users and files, users and processes, and processes and files

[36]. Salem and Stolfo model user search behaviors, based

on the assumption that masqueraders do not know the file

system, and have different search behaviors than the victim

user being impersonated [37]. A recent approach using

data across multiple applications is proposed in [38]. This

new dataset will allow researchers to investigate which

characteristics best represent the user profile.

3. DATA

3.1. The SEA dataset

The Schonlau dataset is the de-facto standard and widely

used in most of the proposed approaches in the literature

due to being one of the first datasets publicly available [11].

In this dataset, 70 users are recorded for several months,

with 15,000 commands logged for each user. However the

arguments of the commands are not logged due to privacy

issues.

In the studies of masquerade detection, 50 randomly

selected users are used to represent benign users and the

remaining 20 users are used to represent masqueraders.

In the literature, the first 5,000 commands of each user

are used for training, and the remaining 10,000 commands

are used for testing. The commands of masqueraders

are randomly added into the benign users’ testing set

in blocks of 100 commands; however these blocks are

not equally distributed across each user. If the current

block is not belonging to a masquerader, a masquerader

block is inserted with 1% probability, otherwise with 80%

probability. This experimental setting is called the SEA

dataset, and has been employed for comparison in most

of the studies in the literature. Therefore, in this study we

will also use the SEA dataset, particularly for the sake of

comparison with other approaches.

6 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

3.2. The Greenberg dataset

The Greenberg dataset [8] is also utilized in this research.

The Schonlau dataset is obtained by using the UNIX acct

auditing mechanism. As stated by the authors in [11], some

commands recorded by the system are not explicitly typed

by the user such as commands in a shell file, make file,

or similar. Moreover, the commands might not be logged

in the order they are typed. For example, the commands

from different terminals are not combined in order by

acct, therefore, this dataset might not be the best choice

for approaches looking at the order of commands. Since

we aim to investigate the effect of command sequences

on the detection of masqueraders, the Greenberg dataset

[8] is a more plausible choice for this study. Furthermore,

this dataset includes more information, such as command

arguments, and aliases.

The Greenberg dataset contains commands typed in

order by 168 users. In this dataset, the users are divided

into four different user groups: novice programmers,

experienced programmers, computer scientists, and non-

programmers. Unfortunately this dataset does not include

as many commands as the Schonlau dataset; with only 6

users in the dataset having more than 5,000 commands.

In this study, we chose 60 users who have more than

1,400 commands. The set of users includes novice users,

experienced programmers and computer scientists. Since

there are insufficient commands for training in the user

group of non-programmers, this group has been excluded

as a benign user. The usage of commands for each

group in the training is given in Table I. The first 1,000

commands of each user are employed for training to

base a profile of self, and the next 400 commands are

employed for testing in order to evaluate whether each

user could recognize themselves. For masquerade data,

60 users out of 112 users are chosen. 400 commands

from each of the 60 masqueraders are united, so in total,

24,000 commands are used in testing for evaluating the

detection of masqueraders. The masqueraders are selected

among user groups equally. Although the dataset also

includes flags, grammars and arguments, and aliases, we

only consider the commands themselves for the sake of

simplicity in this study.

4. NAIVE BAYES MASQUERADE

DETECTION

In this research, we use naive Bayes which performs

well on masquerade detection [9][10]. The naive Bayes

classifier is a supervised learning approach which is easy

to implement and fast. It has been successfully employed

to a range of applications, such as text classification. In

naive Bayes, the probability of a text, x belongs to a class,

y is computed as the probability P(y|x) and the highest

probability predicts the class in which the text belongs to.

In our problem, given a command sequence block s, the

probability that the block belongs to user x (ux) can be

computed as:

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 7

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

Avg. Number of Min. Number of Max. Number of

User Groups Different Commands Different Commands Different Commands

Novice

Programmers 53.2 24 112

Experienced

Programmers 78.9 57 120

Computer

Scientists 79.75 49 110

Table I. User Groups in the Dataset

P (ux|s) =
P (s|ux)P (ux)

P (s)
. (1)

P(s) is the probability of that specific command block

occurring and it is usually omitted based on the assumption

that each command has equal probability [16][31]. Naive

Bayes assumes that all commands/command sequences

in a block are independent of each other. This is the

naive Bayes assumption. Based on this assumption, the

probability that a command block is typed by a particular

user ux can be computed as:

P (s|ux) =

|s|∏
i=1

P (si|ux). (2)

Hence, the formula which calculates the probability that

the block belongs to user x becomes (the prior P(ux) is also

ignored):

P (ux|s)log = log(

|s|∏
i=1

P (si|ux)) =

|s|∑
i=1

log(P (si|ux).

(3)

Psi,ux is the probability of command sequence i for a

particular user x. In this research, four different sequence

sizes are employed: 1, 2, 3, 4. When the sequence size

is 1, it means that the probabilities of one command line

for a particular user x are considered. In this research,

we use the multinominal event model (bag-of-words

approach) for naive Bayes, which usually outperforms the

multivariative Bernoulli model at large vocabulary sizes

[39]. The performance of these two models on masquerade

detection is compared in the literature [16]. Therefore, the

probability of a command or command sequence for a

particular user is computed based on the frequency of the

command or command sequence in the training data with

the given formula below [9]:

P (si|ux) =
Training Countsi,ux + α

Training Data Length + (α x Alphabet Size)
.

(4)

Here, Training Countsi,ux is the number of the

8 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

command or command sequence (si) observed in the

training data. α is a pseudo count to ensure that there are no

zero counts for unseen commands or command sequences.

The lower the α is, the more sensitive the classifier is.

Therefore, it is chosen as 0.01 as in [9]. Alphabet size is

determined separately for each user. Training data length is

the same and fixed for each user. If the command sequence

size is 1, the training data length is 1,000.

In [9][10], besides the self-probability given in Equation

3, the non-self-probability that a command block generated

by non-self users is evaluated by using non-self-training

data, which consists of command blocks generated by the

remaining 49 legitimate users. Then, an anomaly score

is calculated as the ratio of self-probability to non-self-

probability. The effect of non-self-users on anomaly score

is discussed in [40]. It is shown that when the number

of never-seen-before-commands is large in a block, the

probability that the test command block is generated by

the self-user is more likely than the non-self-probability.

However in this research, we use self-probability to

evaluate a score. If the score is higher than a threshold,

it indicates an illegitimate user.

In this research, naive Bayes classifier training with

self-data (called one-class naive Bayes in some studies) is

used due to privacy issues. Hence, a user only employs its

self-data for training. This design is believed to be more

appropriate for the problem. Moreover, it decreases the

training time as a result of using less training data than

multi-classification.

5. EXPERIMENTAL SETTINGS

In previous studies which employ naive Bayes classifica-

tion for masquerade detection [9][10][16], only the fre-

quency/occurrence of commands is taken into account. The

order of commands and thus the frequency of command

sequences are not addressed. However in this research

we aim to analyze the effect of command sequences in

user profiling. For that reason, we introduce three different

experimental settings. All settings are implemented and

evaluated with Java and MATLAB.

5.1. Matching of Commands (MC)

In this setting, only the commands and their probabilities

are considered to build a model of self. The naive Bayes

(one-class) equation given in Equation 3 are employed.

5.2. Matching of Ordered Command Sequences

(MOCS)

In this research we aim to investigate the effect of

command sequences in order to classify user behaviors

as self or non-self. The main hypothesis is that repeated

sequences of user actions can differentiate users from

others. For example, when a user (called user Bob) logs on

to the system at work, he might always do the same actions

in order such as opening an e-mail client, then logging onto

his home computer remotely. Or a system administrator

could run the same commands and scripts in order to get

and analyze system logs. Moreover, users respond in a

similar manner to similar situations, which in turn lead

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 9

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

to repeated user actions [20]. These are the reasons that

the probabilities of ordered sequences in different sizes are

examined in this setting.

The parameters of sequence size are defined as 1, 2, 3,

4. Ordered sequences of each user are obtained separately

from each user’s training data. When the sequence size

is 1, the setting is equal to the MC setting. As given in

Equation 2, the probability of a block generated by self-

user is calculated by multiplying the probabilities of the

sequences in the block. The block size is defined as 100 in

the experiments.

In the MOCS approach, we assume that the usage of

commands in order could be used to distinguish users from

others. However users might not type the exact command

sequence all the time, but use similar command sequences.

For example, an experienced user might use different

editors (vim, gedit, etc.), hence different commands for

similar jobs from time to time. Moreover, users have

variations in their behavior. This characteristic of a user

is defined by a tolerance parameter in our experiments.

The Tolerance parameter shows the number of commands

in a sequence that a user might change, while the order

of the commands in the MOCS approach is preserved.

The tolerance parameter is selected as 1 for 2-command

sequences, and as 1, 2 for 3-command sequences. For

example, if we have “abc”, “abd” sequences in the training

set with the probabilities p1 and p2 respectively, when the

user types the sequence “abz”, the average of probabilities

p1 and p2 is taken for this sequence with the tolerance of

1.

5.3. Matching of Unordered Command

Sequences (MUCS)

As in the MOCS setting, the probabilities of sub-sequences

in a block are considered. However, the sequences do not

necessarily have to be in order in this setting. For example,

user Bob sometimes logs onto his home computer remotely

when he first logs onto his work computer, then he

opens an e-mail client (in an order differing from his

usual behavior). The main assumption is that even users

behave similarly and type the same commands in similar

situations, although the commands might not be typed in

the same order every time (where the order of commands

does not affect the outcome).

Therefore, we propose a new approach that considers

the frequency of command sequences which might be

similar to other sequences typed by the same user.

Furthermore, the users might add some other commands

into the sequence. In this setting, we take into account

this situation by defining a tolerance parameter. Please

note that the order of commands in a sequence is not

preserved in this approach, which is different from the

MOCS approach.

The sequence size is selected as 1, 2, 3, 4 and the

block size is selected as 100 in the experiments. Again,

when the sequence size is 1, the setting is equal to the

MC setting. The tolerance parameter is selected as 1 for

10 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

2-length command sequences, and as 1, 2 for 3-length

command sequences. For example, if we have “abc”, “bad”

sequences in the training set with the probabilities p1 and

p2 respectively, when the user types the sequence “zab”,

the average of probabilities p1 and p2 is taken for this

sequence with the tolerance 1. The basic parameters for

each setting is summarized in Table II. Even though more

experiments are carried out by using more parameters

(sequence size and tolerance parameters) for the MUCS

method, the parameters in Table II are enough to show

the performance of each method. Hence other parameters

employed are omitted for simplicity in the results.

6. RESULTS

6.1. Analysis of the Proposed Sequence-Based

Approaches

We performed a number of experiments in order to

evaluate the performance of the proposed methods on

masquerade detection. Firstly, we compared our newly

proposed methods with some of the approaches in the

literature, mainly comparing our approach with recent

and well-accepted studies. In this experiment, the SEA

dataset is employed, since it is accepted as the de-facto

standard. Figure 1 shows the ROC curve of the MUCS,3,1

method on the SEA dataset which performs with one of

the best results. To clarify, the style of representation for

methods shown in this paper includes the method, the

sequence size, and the tolerance. For example, MUCS,3,1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

D
R

 Adaptive NB, 2011 [15]

 Semi−global alignment,2008 [27]

 n−gram STF−IDF, 2011 [25]

 One−class SVM, 2010 [17]

 ECM, 2004 [24]

 HMM, 2011 [29]

 Two−class NB , 2004 [7]

 One−class Bayesian, 2011 [19]

 PHMM, 2011 [29]

 Sequence alignment,2008 [27]

 Two−class NB w updating, 2004 [7]

 One−class OCLEP, 2006 [18]

 Hybrid Markov, 2001 [11]

Figure 1. The Performance of MUCS,3,1 on the SEA Dataset

represents the method MUCS with sequence size 3 and a

tolerance of 1. The ROC curve plots detection rate versus

false positive rate. Detection rate (DR) shows the ratio

of correctly detected attacks to the total attacks. False

positive rate (FPR) shows the ratio of normal activities that

are incorrectly marked as masquerade attacks to the total

normal activities. The results are the average results of all

users computed by employing threshold averaging [41]. As

it is seen in the figure, the MUCS technique outperforms

both the one-class and two-class naive Bayes techniques.

The MUCS,3,1 method achieves a detection rate of 70%

with a false positive rate of 4.6%. Please note that the

updating mechanism is not applied here for simplicity.

In order to assess and compare the proposed approaches,

the Greenberg dataset is applied in the subsequent

experiments. First of all, the ROC curves of the

exact matching methods (with no tolerance) at different

sequence sizes (1, 2, 3, 4) are given in Figure 2. MOCS,2

represents the method MOCS with sequence size 2. The

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 11

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

Experiment Setting Sequence Size Tolerance

MC 1 N/A

MOCS/MUCS 2 1

3 1,2

4 1,2,3

Table II. Parameters of the Experiment Settings

results are the average results of all users at block

size 100 for compatibility with the application of naive

Bayes. As seen in the figure, the performance of the

methods MC and MOCS,2 (exact matching of 2-length

command sequences) are quite close. The users’ behaviour

of typing the same command pairs could distinguish them

from masqueraders as the command-based approaches.

When the sequence size increases, users do not type the

commands in the same order, as so the performance of the

MOCS method decreases as a result. To conclude, users

could also be profiled with consecutive command pairs

they type. In the future, command-based and sequence-

based approaches could be employed together to achieve

a better performance.

6.2. Effect of Order of Commands on

Masquerade Detection

In this section, the effect of the order of commands is

investigated, but in order to do that, we first compared

the MOCS and MUCS methods, with no tolerance, as

shown in Figure 3. The best performance was from

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC

FPR

D
R

MOCS,2

MOCS,3

MOCS,4

Figure 2. The Performance of MOCS on the Greenberg Dataset

MUCS,2. When the order of 2-length command sequences

is ignored, it shows a better performance than other

sequence-based approaches on masquerade detection. In

general, non-sequential methods (MUCS) always show

better results than the corresponding sequential methods

(MOCS).

A comparison of the MOCS and MUCS methods

with tolerance is shown in Figure 4. Using the same

style, MOCS,2,1 represents the performance of the MOCS

method, with sequence size 2 and tolerance 1. It is

observed that when the tolerance is taken into account

at small sequence sizes, the order of commands does not

12 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOCS,2

D
R

FPR

MOCS,3

MUCS,2

MOCS,4

MUCS,3

MUCS,4

0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

Figure 3. Effect of the Order of Commands on Masquerade

Detection

show any difference on the performance. The accuracy

of both methods (MOCS,2,1 and MUCS,2,1) at the same

tolerance is quite close to each other. We could say that the

effect of tolerance is much more influential than the order

of commands.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOCS,2,1

D
R

FPR

MOCS,3,1

MOCS,4,1

MUCS,2,1

MUCS,3,1

MUCS,4,1

0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

Figure 4. Effect of the Order of Commands with Tolerance on

Masquerade Detection

6.3. Effect of Tolerance on Masquerade

Detection

The performance of the MOCS method at different

sequence sizes (2, 3) and different tolerance parameters (1,

2) is demonstrated in Figure 5a. The effect of tolerance

on the MOCS method at the sequence size 4 is given in

Figure 5b for the purposes of adding clarity. It is shown that

the methods MOCS,3,1 and MOCS,4,1 give a much better

performance than the methods MOCS,3 and MOCS,4

respectively. It could be concluded that users frequently

type the same sequences, but with minor changes.

The performance of the MUCS method at different

sequence sizes (2, 3, 4) and different tolerance parameters

(1, 2, 3) is demonstrated in Figure 6a and Figure 6b. It is

observed that the tolerance parameter for MOCS method

is much more effective than for MUCS. Both methods

(sequential and non-sequential) show that an increase in

the change tolerated in a sequence (more than half of the

sequence) negatively affects the performance.

6.4. Effect of Variety of Commands on

Masquerade Detection

We have shown the results on average for all users so far.

However there are different types of users with different

behaviors in the data set. We show the performance of

the MC method for different user groups in Figure 7.

The user groups are constructed according to the number

of different commands they use. MC 50-75 represents

the users whose average command size is between 50

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 13

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOCS,2
D

R

FPR

MOCS,2,1

MOCS,3

MOCS,3,1

MOCS,3,2

0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

(a) Sequence size: 2, 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOCS,4

D
R

FPR

MOCS,4,1

MOCS,4,2

MOCS,4,3

(b) Sequence size: 4

Figure 5. The Performance of MOCS Method at Different

Tolerance Size

and 75. The performance decreases when the number

of commands increases. The false positive rate increases

for users with more than 75 commands. Especially few

users with a high diversity of commands could affect

the results. Please note that each command group could

contain different types of users (novice, experienced or

computer scientists).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MUCS,2,0

D
R

FPR

MUCS,2,1

MUCS,3

MUCS,3,1

MUCS,3,2

0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

(a) Sequence size: 2, 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MUCS,4,0

D
R

FPR

MUCS,4,1

MUCS,4,2

MUCS,4,3

(b) Sequence size: 4

Figure 6. The Performance of MUCS Method at Different

Tolerance Size

To conclude, we show the performance of the MC,

MOCS, and MUCS methods in this section. The newly

proposed MUCS method outperforms both the one-class

and two-class naive Bayes approaches, which are some

of the most successful and well-known methods in the

literature. The performance of the MUCS method could

be increased with the updating mechanism in the future.

14 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC, <50

FPR

D
R

MC, 50−75

MC, 75−100

MC, >100

0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

Figure 7. The Performance of MC Methods for Different User

Groups

6.5. Effect of User Groups

In this section, we analyze the results for different types of

users and masqueraders. Since there is insufficient data for

non-programmers in the dataset, we have excluded such

users from this analysis. The detection rate of each method

for different user groups at false positive rate 3%, is given

in Table III. The system is trained with the given user group

and the given method in each cell and evaluated for all

types of masqueraders. A matrix showing the performance

of each method on different types of masqueraders for

each trained user group is given in detail in Appendix A

- Results Expanded.

For novice users, the method MUCS,4,1 shows the

best performance. In general, novice users depend on the

tolerance less than other types of users, and non-sequential

methods (MUCS) always give slightly better results than

its corresponding sequential methods (MOCS) when the

tolerance is not taken into account. This type of users have

Method/User Novice Users Experienced Users Computer Scientists

MC 76.76% 75.85% 86.91%

MOCS,2 77.45% 67.40% 82.90%

MOCS,3 70.42% 50.81% 70.69%

MOCS,4 61.95% 46.37% 55.31%

MUCS,2 78.83% 79.31% 82.81%

MUCS,3 76.57% 57.75% 78.19%

MUCS,4 73.31% 52.02% 68.50%

MOCS,2,1 63.40% 74.57% 72.96%

MOCS,3,1 76.79% 77.09% 84.40%

MOCS,3,2 56.06% 70.40% 62.75%

MOCS,4,1 71.26% 52.34% 76.32%

MOCS,4,2 74.49% 79.12% 78.54%

MOCS,4,3 52.00% 61.46% 56.12%

MUCS,2,1 63.41% 74.83% 69.65%

MUCS,3,1 78.02% 82.00% 79.01%

MUCS,3,2 56.24% 68.64% 59.39%

MUCS,4,1 79.13% 56.34% 75.86%

MUCS,4,2 72.09% 80.04% 75.47%

MUCS 4,3 51.85% 58.43% 54.66%

Table III. The Comparison of Proposed Methods for Different

User Groups

the smallest set of commands and have a tendency to use

similar 2-length command sequences in different orders

(MUCS,2). Hence this characteristic of novice users might

be used to distinguish these users from insider threats.

When the matrix is analyzed in Appendix A, novice users

detect all kinds of masquerader groups with a high degree

of accuracy, except novice masqueraders, in all methods.

Since all masqueraders except novice ones, use bigger

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 15

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

command sets than novice users, they are easily detected

when trained with novice users.

Probability distributions of command blocks of a novice

user by employing MC method are given in Figure 8a,

which is shown below the x-axis, with distributions above

the x-axis belonging to the probability distributions of

command blocks of novice masqueraders. Since they

use similar commands from a small set of commands,

the distributions are quite similar as well. On the other

hand, the same user is compared with the experienced

masqueraders in Figure 8b. It is clearly observed that

employing commands from a different and larger set of

commands decreases the probabilities, hence detection is

achieved with a high rate of accuracy.

For experienced users, the best performance is obtained

by the method MUCS,3,1. When the tolerance is

smaller than 50% of the sequence size, there is a

considerable difference between sequential and non-

sequential methods. It could be concluded that these

users employ unordered command sequences with small

variations. The methods applied for experienced users need

more tolerance than the methods applied for novice users.

Although both experienced users and computer scientists

have a greater diversity of commands on average, computer

scientists are easier to distinguish from masqueraders. As

seen in the matrix, the systems trained with experienced

users cannot detect experienced masqueraders as well as

expected, however they do show a slightly better detection

−400 −350 −300 −250 −200 −150 −100 −50 0
−100

−80

−60

−40

−20

0

20

40

60

80

100

(log) Probability Distributions of Command Blocks

F
re

qu
en

cy

(a) A Novice User vs. Novice Masqueraders

−400 −350 −300 −250 −200 −150 −100 −50 0
−100

−80

−60

−40

−20

0

20

40

60

80

100

(log) Probability Distributions of Command Blocks

F
re

qu
en

cy

(b) A Novice User vs. Experienced Masqueraders

Figure 8. Probability Distributions of Command Blocks

rate than for the novice users (train)-novice masquerader

(test) relation.

The performance of the best method for each user

groups on different masquerader groups is shown in

Table IV. It is observed that the novice user group

shows very low accuracy on masqueraders with the same

type. This is an expected result since they show similar

behaviors. An interesting observation is that computer

16 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

scientist masqueraders can be easily distinguished even

from computer scientist users. Computer scientist users

have the greatest diversity of commands on average. The

usage of specialized commands (such as commands for

compiling programs) can distinguish computer scientist

users from all other types of masqueraders with a high

degree of accuracy.

MC method performs reasonably well for each users,

especially for computer scientists. Specific commands

used by each computer scientist makes them easier to

distinguish from others. When the detection rates are

analyzed from the point of masqueraders as in Table

IV, computer scientist masqueraders are the easiest to

detect among all types of masqueraders. On the other

hand, experienced masqueraders are harder to detect. Even

computer scientists and experienced users employ various

commands, specific commands used by each computer

scientists make them easier to distinguish from others.

Probability distributions of commands of a computer

scientist user by employing MC method are given in

Figure 9a. The distributions above the x-axis belong to

the probability distributions of commands of computer

scientist masqueraders. As it is seen, one computer

scientist can be easily differentiated from other computer

scientists. The same user is compared with the experienced

masqueraders in Figure 9b. Even though experienced

users have a large set of commands, they usually

employ common commands. On the other hand, specific

command blocks that each computer scientist masquerader

−400 −350 −300 −250 −200 −150 −100 −50 0
−100

−80

−60

−40

−20

0

20

40

60

80

100

(log) Probability Distributions of Command Blocks

F
re

qu
en

cy

(a) A Computer Sci. User vs. Computer Sci. Masqueraders

−400 −350 −300 −250 −200 −150 −100 −50 0
−100

−80

−60

−40

−20

0

20

40

60

80

100

(log) Probability Distributions of Command Blocks

F
re

qu
en

cy

(b) A Computer Sci. User vs. Experienced Masqueraders

Figure 9. Probability Distributions of Command Blocks

types decrease the probability of a block typed by the

same computer scientist (below the x-axis), then the

multiplication of probabilities stays below the threshold

and is marked as a masquerader.

In real life scenarios, most insider attacks are planned

[42]. Some of the primary motivations of these attackers

is to steal sensitive information from an organization,

or to disrupt critical business operations. In such

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 17

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

Users/Masqueraders Method Non Novice Experienced Computer

Programmers Users Users Scientists

novice users MUCS,4,1 96.45% 32.21% 92.02% 96.13%

experienced users MUCS,3,1 73.96% 98.57% 70.80% 84.45%

computer scientists MC 81.08% 99.31% 83.07% 84.09%

Table IV. The Performance of Proposed Methods on Different Types of Masqueraders

advanced attack scenarios, attackers could target critical

servers which contain sensitive data or perform business

operations, and therefore we expect the attacker to be as

experienced as the system administrator responsible for

critical servers. Hence, we could choose a technique which

performs best on differentiating experienced users from

experienced masqueraders (MUCS,3,1).

The protection/detection mechanisms are mainly based

on the value of the information to the organization.

Therefore, we could use multiple protection mechanisms

and, correlate logs of these mechanisms for protecting

critical resources. In order to protect less valuable

resources in an organization, we could consider each

group/user within the organization based on their usage

behaviors such as the number of commands they use, or the

complexity of the commands, in order to make a decision

on the most appropriate technique. The method MUCS, 3,

1 usually performs better than other methods as shown in

the Figure 1. MC also performs well enough for different

user groups, so we could prefer MC over MUCS,3,1 due

to its simplicity and efficiency for protecting non-critical

resources.

7. CONCLUSION

In this research, sequence-based approaches are investi-

gated for masquerade detection. We propose two sequence-

based approaches namely MOCS and MUCS, and compare

them with MC, the command-based naive Bayes approach.

All these methods employ the bag-of-words approach and

use only self-data for training due to privacy issues. The

performance of each method and the comparison of these

methods with other recent techniques in the literature are

demonstrated. In the results, one of the best performances

is shown by the MUCS method. The newly proposed

method MUCS,3,1 outperforms both the one-class and

two-class naive Bayes approaches, which are some of the

most successful and well-known methods in the literature.

In the future, naive Bayes with updating, as in [7][43]

could be applied to overcome concept drift issue and to

increase the performance of the MUCS method. Monitor-

ing novice users for a sufficient length of time could also

allow us to observe changes in user behaviors over time.

The sequence-based approaches in the literature

consider sequences only in order. The effects of the order

18 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

of commands, the variety of commands and the tolerance

on the methods, are also explored in this study. Non-

sequential methods usually perform considerably better

than the corresponding sequential methods. When the

tolerance is taken into account, and at less than half of a

command sequence, it improves the results. Furthermore,

it is noteworthy that the tolerance parameter is more

influential than the order of commands. Command variety

is another parameter affecting the results in a negative

way. The similarity of user commands is sufficient to

differentiate those users with small command sets from

masqueraders. For users with a high variety of commands,

sequence-based approaches with tolerance might perform

better than MC at high detection rates. It could be

concluded therefore, that different methods could be more

suitable for different types of users.

The effects of different user groups/masqueraders

on the results were investigated. Novice users detect

all kinds of masquerader groups except novice ones

with a high accuracy. Their general behaviors, which

use similar unordered command sequences from the

smallest set of commands is the best way to model

this type of user. Computer scientist masqueraders are

easily distinguishable from all types of users, even from

computer scientist users. Experienced masqueraders also

employ commands from a large set of commands like

computer scientists, however they are more difficult

to detect than computer scientists due to the common

commands they use.

To conclude, we propose sequence-based approaches

which consider both the order of commands and small

variations in a command sequence. On the other hand,

approaches in the literature mainly assume commands

in a sequence are ordered at all times. We show the

technique based on unordered similar command sequences

(MUCS) outperforms the technique based on ordered

command sequences (MOCS)/commands (MC) in many

cases. Among MUCS techniques, MUCS,3,1 shows the

best performance on average for all user groups. We

also use the Greenberg dataset which is more appropriate

for sequence-based approaches in this research. The

approaches were evaluated rigorously by considering

different parameters: the order of commands, the variations

in command sequences, the variety of commands and

the user groups. And finally, it can be stated that we

have analyzed user groups from the masquerade detection

point of view and thoroughly analyzed sequence-based

approaches in this research.

REFERENCES

1. Cummings A, Lewellen T, McIntire D, Moore P,

Trzeciak R. Insider threat study: Illicit cyber activity

involving fraud in the u.s. financial services sector.

Cert report, Carnegie Mellon University 2011.

2. Cybersecurity watch survey 2011. URL http://

www.cert.org/insider_threat/.

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 19

DOI: 10.1002/sec

Prepared using secauth.cls

http://www.cert.org/insider_threat/
http://www.cert.org/insider_threat/

Sequence-Based Masquerade Detection for Different User Groups S. Sen

3. Cloud security alliance : Top threats to

cloud computing v1.0 2010. URL https:

//cloudsecurityalliance.org/

topthreats/csathreats.v1.0.pdf.

4. Salem M, Hershkop S, Stolfo S. A survey of insider

attack detection research. In Advances in Information

Security, vol. 39, Springer, 2008; 69–90.

5. Bertaccihini M, Fierens P. A survey on masquer-

ader detection approaches. In Proc. of Congreso

Iberoamericano de Seguridad Informatica, Universi-

dad de la Republica de Uruguay, 2008; 46–60.

6. Schonlau dataset 2001. URL http://www.

schonlau.net.

7. Maxion R, Townsend T. Masquerade detection

augmented with error analysis. IEEE Transactions on

Reliability 2004; 53:124–147.

8. Greenberg S. Using unix: Collected traces of 168

users. Research Report 88/333/45, Department of

Computer Science, University of Calgary 1988.

9. Maxion R, Townsend T. Masquerade detection

using truncated command lines. In Proc. of the

International Conference on Dependable Systems &

Networks, 2002; 219–228.

10. Maxion R. Masquerade detection using enriched

command lines. In Proc. of the International

Conference on Dependable Systems & Networks,

2003; 5–14.

11. Schonlau M, DuMoucel W, Ju H, Karr A, Theus

M, Vardi Y. Computer intrusion: Detecting masquer-

aders. Statistical Science 2001; 16(1):58–74.

12. Bertaccihini M, Fierens P. Preliminary results on

masquerader information-theoretic detection using

compression-based similarity metrics. Electronic

Journal of SADIO 2007; 7(1).

13. Evans S, Eliand E, Markham S, Impson J, Laczo

A. Mdlcompress for intrusion detection: Signature

inference and masquerade attack. In Proc. of Military

Communications Conference, 2007.

14. Yung K. Using feedback to improve masquerade

detection. In Proc. of the International Conference on

Applied Cryptography and Network Security, LNCS,

vol. 2846, Springer, 2003; 48–62.

15. Dash S, Reddy K, Pujari A. Adaptive naive bayes

method for masquerade detection. Security and

Communication Networks 2011; 4:410–417.

16. Wang K, Stolfo S. One-class training for masquerade

detection. In Proc. of the 3rd IEEE Workshop on Data

Mining for Computer Security, 2003; 398–400.

17. Salem M, Stolfo S. Detecting masqueraders: A

comparison of one-class bag-of-words user behav-

ior modeling techniques. In Proc. of the 2nd Inter-

national Workshop on Managing Insider Security

Threats, 2010; 3–13.

18. Chen L, Dong G. Masquerader detection using

oclep: One-class classification using length statistics

of emerging patterns. In Proc. of the Seventh

20 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.schonlau.net
http://www.schonlau.net

S. Sen Sequence-Based Masquerade Detection for Different User Groups

International Conference on Web-Age Information

Management Workshops, 2006.

19. Wang Q, Si L. A robust one-class bayesian approach

for masquerade detection. In Proc. of Proceedings

of the 4th ACM Workshop on Security and Artificial

Intelligence, 2011; 111–112.

20. Lane T, Brodley C. Sequence matching and learning

in anomaly detection for computer security. In Proc.

of AAAI Workshop on AI Approaches to Fraud

Detection and Risk Management, 1997; 43–49.

21. Latendresse M. Masquerade detection via customized

grammars. In Proc. of the 2nd International

Conference on Detection of Intrusion and Malware,

and Vulnerability Assessment, LNCS, vol. 3548,

Springer, 2005; 141–159.

22. Nevill-Manning C, Witten I. Identifying hierarchical

structure in sequences: A linear-time algorithm.

Journal of Artificial Intelligence Research 1997;

7:67–82.

23. Zhou J, Shirai H, Kuroiwa J, Odaka T, Ogura

H. Analysis of command frequency and command

sequence grammar in ids. In Proc. of IEEE Confer-

ence on Soft Computing in Industrial Applications,

Springer, 2008; 113–118.

24. Oka M, Oyama Y, Abe H, Kato K. Anomaly detection

using layered networks based on eigen co-occurrence

matrix. In Proc. of the 7th International Symposium

on Recent Advances in Intrusion Detection, LNCS,

vol. 3224, Springer, 2004; 223–237.

25. Geng D, Odaka T, Kuroiwa J, Ogura H. An n-gram

and stf-idf model for masquerade detection in a unix

environment. Journal in Computer Virology 2011;

7:133–142.

26. Seo J, Cha S. Masquerade detection based on svm and

sequence-based user commands profile. In Proc. of

the 2nd ACM symposium on Information, Computer

and Communications Security, 2007; 398–400.

27. Coull S, Szymanski B. Sequence alignment for

masquerade detection. Computational Statistics and

Data Analysis 2008; 52(8):4116–4131.

28. Sodiya AS, Folorunso O, Onashoga SA, Ogunderu

OP. An improved semi-global alignment algorithm

for masquerade detection. International Journal of

Network Security 2011; 13(1):31–40.

29. Huang L, Stamp M. Masquerade detection using

profile hidden markov models. Computers & Security

2011; 30:732–747.

30. Xiaoa X, Tianc X, Zhaib Q, Xiaa S. A variable-

length model for masquerade detection. The Journal

of Systems and Software 2012; 85:2470–2478.

31. Tapiador J, Clark J. Masquerade mimicry attack

detection: A randomised approach. Computers &

Security 2011; 30:297–310.

32. Tapiador JE, Hernandez-Castro JC, Peris-Lopez P.

Online randomization strategies to obfuscate user

behavioural patterns. Journal of Network and Systems

Management 2012; 20:561–578.

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 21

DOI: 10.1002/sec

Prepared using secauth.cls

Sequence-Based Masquerade Detection for Different User Groups S. Sen

33. Kothari A. Defeating masquerade detection. Msc

thesis, Department of Computer Science, San Jose

State University 2012.

34. Razo-Zapata I, Mex-Perera C, Monroy R. Masquer-

ade attacks based on user’s profile. The Journal of

Systems and Software 2012; 85:2640–2651.

35. Garg A, Rahalkar R, Upadhyaya S, Kwiat K.

Profiling users in gui based systems for masquerade

detection. In Proc. of IEEE Information Assurance

Workshop, Springer, 2006; 48–54.

36. Nguyen N, Reiher P, Kuenning G. Detecting insider

threats by monitoring system call activity. In Proc.

of IEEE Workshop on Information Assurance, 2003;

45–52.

37. Salem M, Stolfo S. Modeling user search behavior

for masquerade detection. In Proc. of the 14th

International Conference on Recent Advances in

Intrusion Detection, LNCS, vol. 6961, Springer,

2011; 181–200.

38. Saljooghinejad H, Bhukya WN. Layered security

architecture for masquerade attack detection. In Proc.

of Data and Applications Security and Privacy XXVI,

LNCS, vol. 7371, Springer, 2012; 255–262.

39. McCallum A, Nigam K. A comparison of event

models for naive bayes text classification. In Proc. of

AAAI Workshop on Learning for Text Categorization,

1998.

40. Killourhy K, Maxion R. Investigating a possible flaw

in a masquerade detection system. Technical Report

869, Newcastle University 2004.

41. Fawcett T. An introduction to roc analysis. Pattern

Recognition Letters 2006; 27:861–874.

42. Mills RF, Grimaila MR, Peterson GL, Butts JW.

A scenario-based approach to mitigating the insider

threat. ISAA Journal 2011; 9(5):12–19.

43. Sen S. Using instance-weighted naive bayes for

adapting concept drift in masquerade detection.

International Journal of Information Security 2014;

.

22 Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

S. Sen Sequence-Based Masquerade Detection for Different User Groups

A. RESULTS EXPANDED

Method Users Non-Programmer Novice Experienced Computer Scientist
Masqueraders Masqueraders Masqueraders Masqueraders

MC novice users 95.59% 25.24% 91.09% 94.99%
experienced users 65.82% 97.70% 65.15% 75.15%

computer scientists 81.08% 99.31% 83.07% 84.07%

MOCS,2 novice users 95.14% 29.54% 90.61% 94.65%
experienced users 57.91% 91.24% 52.39% 68.35%

computer scientists 78.96% 96.82% 75.04% 80.46%

MOCS,3 novice users 88.17% 24.56% 81.12% 88.16%
experienced users 43.22% 77.75% 33.88% 48.76%

computer scientists 68.26% 87.66% 58.32% 68.44%

MOCS,4 novice users 77.37% 23.95% 69.81% 76.65%
experienced users 39.91% 72.31% 30.11% 40.10%

computer scientists 53.98% 74.94% 41.83% 49.90%

MUCS,2 novice users 96.42% 31.29% 91.91% 95.62%
experienced users 71.38% 96.09% 67.26% 82.40%

computer scientists 78.84% 96.89% 75.26% 80.15%

MUCS,3 novice users 94.04% 29.15% 89.10% 94.10%
experienced users 50.69% 82.82% 40.39% 57.21%

computer scientists 75.44% 92.08% 68.70% 76.31%

MUCS,4 novice users 91.17% 30.36% 82.94% 89.80%
experienced users 47.64% 76.48% 34.55% 49.17%

computer scientists 67.28% 85.29% 55.10% 66.26%

MOCS,2,1 novice users 83.37% 8.37% 79.23% 82.69%
experienced users 62.59% 98.78% 64.30% 72.19%

computer scientists 59.54% 96.89% 69.24% 66.47%

MOCS,3,1 novice users 95.09% 25.65% 90.87% 95.52%
experienced users 66.53% 96.94% 65.11% 79.67%

computer scientists 78.40% 97.90% 78.49% 82.80%

MOCS,4,1 novice users 88.32% 23.07% 83.54% 89.81%
experienced users 41.26% 81.18% 35.50% 51.34%

computer scientists 72.01% 93.98% 66.27% 73.18%

MUCS,2,1 novice users 83.56% 8.51% 79.24% 83.09%
experienced users 62.67% 98.79% 64.68% 72.92%

computer scientists 56.67% 91.97% 65.99% 63.48%

MUCS,3,1 novice users 95.91% 28.32% 92.07% 96.43%
experienced users 73.96% 98.57% 70.80% 84.45%

computer scientists 71.54% 93.48% 73.92% 77.10%
MUCS,4,1 novice users 96.45% 32.21% 92.02% 96.13%

experienced users 45.12% 86.68% 40.20% 53.35%
computer scientists 70.86% 91.68% 68.39% 72.52%

Table V. Users/Masqueraders Matrix

Security Comm. Networks 2010; 00:2–23 c© 2010 John Wiley & Sons, Ltd. 23
DOI: 10.1002/sec
Prepared using secauth.cls

	1 Introduction
	2 Related Work
	3 Data
	3.1 The SEA dataset
	3.2 The Greenberg dataset

	4 naive Bayes Masquerade Detection
	5 Experimental Settings
	5.1 Matching of Commands (MC)
	5.2 Matching of Ordered Command Sequences (MOCS)
	5.3 Matching of Unordered Command Sequences (MUCS)

	6 Results
	6.1 Analysis of the Proposed Sequence-Based Approaches
	6.2 Effect of Order of Commands on Masquerade Detection
	6.3 Effect of Tolerance on Masquerade Detection
	6.4 Effect of Variety of Commands on Masquerade Detection
	6.5 Effect of User Groups

	7 Conclusion
	A Results Expanded

