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Abstract. Android is the platform most targeted by attackers. While
security solutions have improved against such attacks on one side, at-
tackers introduce new variants of existing malware by employing new
strategies to evade them on another side. One of the most effective eva-
sion techniques widely used is updating malicious code at runtime. In
this study, an up-to-date dataset of such update attacks called UpDroid
is introduced and then analyzed. This dataset consists of 2,479 samples
belonging to 21 malware families, of which most have been discovered
in just the last few years. While this dataset gives an overview of recent
malware, it will also be useful for researchers working on dynamic anal-
ysis. Furthermore, in this study, a new classification algorithm based on
both static and dynamic features is introduced in order to group such
malware into families.
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1 Introduction

Android is still the platform most targeted by attackers [30]. According to a
recent Av-test report [7], the number of malicious programs targeting Android
has more than doubled in the last year. Mobile malware could damage end-
users through different aspects such as stealing banking information, gaining
root access and thereby corrupting the victim’s device. However, the primary
motivation of attackers is still driven by illicit financial gain [30]. Even Android
has modified its architecture to improve security, but that is only beneficial to
users who download the latest version of Android, which is rarely the case [30].

In the last few years, there has been significant growth in the number of new
Android mobile malware variants, but a drop in the number of new Android mo-
bile malware families [29][30]. Therefore, attackers are applying advanced evasion
techniques to existing malware. Updating application at runtime is one of the
most effective evasion strategies reported in the literature [8][25]. Since most
commercial anti-virus solutions are based on static analysis, they prove largely
ineffective against such update attacks. On the other hand, how to detect such



attacks and how to trigger them at runtime is an area needing further investiga-
tion. In order to accelerate studies in detecting update attacks and developing
dynamic analysis-based solutions, a dataset of update attacks is introduced in
this study. Such a dataset would prove useful for studies working on malware that
cannot be effectively detected by static analysis-based techniques. Researchers
working on input generation tools, fuzzing, and dynamic analysis could therefore
refer to this dataset. Even though the current mobile malware datasets consist of
some update attacks [4][34][37], this study introduces a dataset called UpDroid
which consists entirely of update attacks. The study also presents analysis of
the dataset, which is generally made up of different malware families than those
found in other datasets [4][34][37]. Even though UpDroid contains few families
that are common to the biggest recent malware dataset, AMD [34], it contains
different samples of those families. Furthermore most of the new families included
in UpDroid were released during or since 2015 (57.1%). Hence, this dataset is
also intended to be useful for studies working on up-to-date mobile malware is-
sues. The UpDroid dataset consists of 21 families and 2,479 samples. More than
half of these families (12 out of 21) were discovered during or since 2015, while
the remainder (9 out of 21) were discovered before 2015, and half of those (4
families) have new variants discovered either in 2015 or since then.

During construction of the UpDroid dataset, some difficulties were faced with
familial classification of some malware, especially when most AV solutions could
not reach a decision on a single family. It is known that familial classification
of existing anti-virus solutions can be unreliable [14][15][16]. Therefore, in the
current study, a new mobile malware family classification system is introduced
based on both static and dynamic application features. With the proliferation of
obfuscated and evasive malware, it is believed that using dynamic features has
become inevitable for the correct classification of malware families.

Malware familial classification has become significantly important with the
increased number of mobile malware variants seen in recent years. If the family
of a detected malware is known, specific steps can be taken to decrease or re-
verse the damage caused by the malware. Furthermore, it helps to decrease the
number of samples that malware analysts need to analyze. Automatic catego-
rization of a harmful application into its family provides security professionals
with an idea about the malware before carrying out the necessary manual anal-
ysis, and thereby, minimizes analysis time. To the best of our knowledge, only
one recent study called Ec2 [9] has proposed malware family classification by
applying hybrid features. The current study shows that the solution introduced
achieves a better rate of accuracy than the results published for Ec2, by using
fewer features.

2 UpDroid Dataset

This study introduces the UpDroid dataset to the research community 1. The
dataset consists of malicious applications using updating techniques in order to

1 https://wise.cs.hacettepe.edu.tr/projects/updroid/dataset/



evade detection. An update attack typically does not contain any malicious code
at the installation stage, waiting instead to add its malicious payload at runtime.
The loading of a malicious payload could happen at the start of the application
or it could use other triggering mechanisms such as event-based or, time-based
[8]. For attackers, there are different ways to load their malicious code. One of the
most used techniques is loading Java classes at runtime via ClassLoader objects.
In such a case, the loaded code can be retrieved from the apk file or from a remote
server at runtime. Another method is loading native code by using JNI (Java
Native Interface). Android enforces applications to use defined APIs for loading
native code. However, this loaded native code can also load and execute other
native code without using this API. In addition, the most recently loaded native
code can be stored as data and then be interpreted as code after loading. Because
of these reasons, providing security against update attacks using this technique
is more difficult than the class loading technique [24]. The last technique acquires
the malicious payload by using the Package Manager Service, which manages the
installation and deletion of applications in Android. Through this method, the
application requires the user’s confirmation in order to use the Package Manager.
Therefore, it needs to use phishing techniques in order to persuade the user of
its authenticity. The attacker then downloads and installs the actual malware
after gaining the root privilege. Because of the technique employed, these types
of malware are known as Dropper or Downloader.

The construction of the UpDroid dataset was carried out in three steps, as
shown in Figure 1. Each step is explained in detail in the subsequent sections.

Fig. 1: Construction Steps of UpDroid

2.1 Collection of Apps

In this phase, Android applications were collected from the Koodous platform
[19] and the ApkPure market store [3]. Koodous is a web platform for mal-
ware analysts which has built-in analysis tools such as DroidBox [2]. Apkpure is
an unofficial application market. In order to obtain the dataset, three filtering
mechanisms were applied to the downloaded samples from Koodous. The first
filter downloads applications from the most recently uploaded to Koodous. The



primary reason is being to collect up-to-date malware. The second filter selects
applications not detected as malicious by other analysts, since the aim is to
add novel update attacks besides those already known to the dataset. For the
last filter, output of the built-in Dropbox tool in Koodous was employed, which
checks for applications with at least one loading activity using DexClassLoader.
The most popular applications from each category are downloaded from Ap-
kpure. As a result, 11,490 applications were obtained from Koodous, together
with 6,299 applications from Apkpure.

2.2 Analysis of Apps

In this phase, the applications were run on an emulator for dynamic analysis. In
order to do that, each application was run for 15 minutes and their DroidBox
(4.1.2) outputs collected. All the file accesses that made by applications and all
the network traffic that applications generate was logged for further analysis.

Malicious applications can be triggered in many ways. For example, the mali-
cious payload could be loaded after a button is pressed, or after a certain period of
time has passed [8]. Triggering techniques could vary by malware family. System
events are one of the most used triggering techniques among malware. During
the analysis, it was observed that BroadcastReceiver registered during runtime
was one of the triggering mechanisms that update attacks apply. For example,
an application which loads malicious code at runtime may use the PackageAdded
receiver to ensure that the malicious package has been added. In this scenario,
an attacker could use the registerReceiver function in order to add this receiver
and bypass static analysis. Since DroidBox does not record registered receivers
at runtime, the Android image was recreated by adding this log to the register-
Receiver function on the Android framework. The other integration to DroidBox
is the Monkey tool, which is used for random input generation of an application.
Surprisingly, it is shown that the tools based on random exploration strategies
such as Monkey obtained higher code coverage than more sophisticated strate-
gies implemented by other tools [10]. Therefore, Monkey was chosen to be used
in the current study.

Three filtering mechanisms were employed to the DroidBox outputs to find
potential update attacks. All applications collected from Koodous and ApkPure
in the first phase were sent to those filtering mechanisms in order to find mal-
ware. Since most of the samples were collected from Koodous, they were already
expected to be malicious, but here the aim was to process update variants. In the
first filter, the relationship betweeen dynamic code loading and data leakage has
examined. A malicious application typically uses some personal sensitive data
such as IMEI, IMSI, or phone number in order to identify the victim’s devices.
This data is generally leaked through the file system or over the network. This
filtering mechanism basically checks whether or not the app has both dynamic
loading and data leaking activities. If the code loading activity happens before
the data leakage, then the application is considered as a possible candidate for
update attack. The second filtering mechanism checks for an opened connection



from the app to a malicious server after dynamic code loading. For this pur-
pose, all IP addresses fetched from DroidBox’s output are separated into two
groups (malicious and benign addresses) by using more than 200 blacklists [1].
Again, if the class loading activity happens before the connection to a malicious
server, then the application is labeled as a possible update attack. If the reverse
order happens, it is also considered as malicious, but since it is not an update
attack, it is discarded. In the third filter, both static and dynamic analysis are
employed to explore the relationship between native code loading, and both sen-
sitive data leakage and malicious server connection. If the app’s source code
has System.loadLibrary or System.load functions to import native codes, and it
performs one of the two malicious activities at runtime, then the application is
labeled as a possible update attack.

2.3 Dataset Validation

The final step was validation of the constructed dataset. Here, all potential can-
didate update attacks are sent to the VirusTotal [32] at first. If the application
is found to be malicious by more than 20 AVs and its dominant label given by
AVs belonging to an update attack family, it is kept in the dataset. This step
could have been directly applied to the collected applications in the first phase,
but the second phase was still carried out for the possibility of exploring novel
update attacks. Furthermore, results showed the filtering mechanisms to be suf-
ficiently effective as 82.66% of potential applications sent to the VirusTotal [32]
were confirmed as update attacks. Others undetected by VirusTotal [32] do not
necessarily mean that they are not update attacks. Therefore, they are sent for
the manual analysis as a possible new update attack. Manual analysis found 10
new attacks. While these 10 samples are added to the dataset, others undetected
by AVs are filtered out. Since these attacks showed adequate similarity to the
dataset’s existing families, they were not considered as novel update attacks.
However, it should be noted that they are also not considered as malicious by
AVs. Finally, only 7.1% of all collected samples escaped our filtering mechanisms.
Among these applications, if there are samples belonging to update families in
the dataset, these samples were also included to the dataset in order to increase
the dataset size.

If the number of AVs that give the most used label was used for more than
twice the number of AVs for the second most dominant label, then the most
dominant label was assumed to be reliable. Otherwise, the malware family was
assumed to be ambiguous. In this phase, 150 ambiguous malware was detected.
Such ambiguous malware was sent to the family classification algorithm devel-
oped in this study. Those 150 samples whose families were identified by this
algorithm were also included to the dataset. Details of the algorithm are ex-
plained in the subsequent section.



Table 1: The UpDroid Dataset Overview
Family Sample Discovered Obfuscation Category Updating Tech. Triggering Tech.

Code Load Native Load Dropper Start Event Time

Asacub 66 2015 D Banking D D

BankBot 33 2015/7 D Banking D D D D

Extension 9 2013 Generic D D

FakeBank 8 2013/6 D Banking D D

FakeFlash 6 2012/7 D Banking D D D

FakeToken 12 2017 D Banking D D D

Krep 5 2013 Generic D D

Ksapp 2 2013 Generic D D

Leech 7 2015 D Generic D D D

Lotoor 11 2010/3 Generic D D D

Malap 193 2013 D Info Stealer D D D

Marcher 30 2013/7 D Banking D

Ogel 12 2015 D Generic D D D

Rootnik 41 2015/7 D Generic D D D

Shedun 630 2015 D Generic D D

SmsReg 291 2015 D Generic D D D

SmsSpy 66 2014/6 D Banking D D

Sprovider 5 2016 D Generic D D

Tordow 11 2016 D Banking D D D D

Triada 1026 2016 D Generic D D D D

Ztorg 15 2015 D Generic D D D

2.4 UpDroid Dataset Overview

As shown in Table 1, the UpDroid dataset has 21 malware families, and a total
of 2,479 malware samples. In Table 1, for some families there are two discovery
times because some new variants of these families were discovered after its first
release into the wild. Overall, 51.7% of these families were collected during or
after 2015. For observing the behaviors of malware families, a few samples from
each family were manually analyzed. During this analysis, it was observed that
new malware families are generally more sophisticated and complex than the
previous ones. For example, all four families not employing obfuscation tech-
niques were discovered prior to 2014; such as a sample of the Extension family
that imports its malicious native code immediately after it started. The author
of this malware is obviously not concerned with hiding the name of the native
library to be loaded.

On the monetization side, the families are divided into three categories : bank-
ing, generic, and information stealing. Eight families belonging to the banking
category try to steal victim’s banking information. For example, Tordow targets
banks in Russia and has root access gain capability, encrypting files and acting
like ransomware besides the traditional banking malware [11]. It is observed that
new malware families in Android platforms have more than one feature to harm
victims such as Tordow. The generic category is used for families which have no
specific target. They usually try to infect the device and gain root access. Upon
obtaining the root privilege, they may, for example download other applications,
or join a botnet. For instance, Rootnik removes its icon from the menubar im-
mediately after installation on the device and tries to gain root privilege. After
that, it tries to install aggressive advertisement applications. The last category
belongs to malicious applications which steal sensitive information from victims.



It is observed that 16 malware families use dynamic code loading, eight fam-
ilies use native code loading and seven families use dropper technique for updat-
ing itself. Another point is that most of the families use combinations of these
techniques. For example, the 2015 variant of the BankBot family uses only dy-
namic code loading to import its malicious payload; whereas newer variants of
the same family firstly download and install a new apk, and then this new apk
uses dynamic code loading in order to import its malicious payload.

It is observed that nine malware families trigger their malicious code im-
mediately after starting, whereas 11 families are event-triggered. These events
could be inputs given by the user, or system events, etc. In addition, five families
use time-based triggering [8]. Just like the updating techniques, some families
use a combination of different triggering techniques. Interestingly, all these ob-
served families were discovered during or after 2015, and use event-based and
time-based triggering mechanisms together.

3 Family Classification

Malware samples belonging to a same family share some common features. Al-
though the studies mainly focus on malware detection, malware family classi-
fication becomes more important each day due to increasing variations in each
family. It is known that commercial anti-malware tools are not reliable in identi-
fying the family [14][15][16]. A family classification algorithm was also needed for
the construction of the UpDroid dataset created in the current study. When anti-
malware solutions cannot agree on a family, the family classification algorithm
introduced in this study was employed. While most family classification studies
in the family classification rely on static features, they are seen as inadequate,
since an attacker can easily change static features by using various methods like
obfuscation, dynamic code loading, etc. Furthermore, some similarities between
samples belonging to the same family were observed during this study’s dynamic
analysis (see Figure 2a and Figure 2b). Figure 2a shows the activity-time rela-
tions for two samples belonging to the SmsReg family. Both samples have similar
sequences of activities, but at different times. Since they are randomly triggered,
it is an expected result. But the density of activities carried out by each sample
are very similar, as demonstrated in Figure 2b. Based on these observations, a
family classification algorithm based on static and dynamic features was aimed
to be investigated.

Besides the update attack families in the UpDroid dataset, new families are
also included for familial classification. Here, only families identified by Virus-
Total [32] are included in the dataset. Since AVs have different standards for
naming malware and malware families, 342 family names were collected from
the Internet [4][5][26][33] in order to extract family names from the outputs of
AV. After the family names were extracted, they were checked similarly checked
as per the AMD dataset’s construction [34]. If the number of AVs that gave the
most used label was used more than twice that of the number of AVs for the
second most dominant label, then the most dominant label was assumed to be



(a) (b)

Fig. 2: (a)Activity-time Graphs, (b) Activity Density Graphs of Two Samples
Belonging to the SmsReg Family

reliable. Otherwise, the malware was discarded. Since one of the main purposes
of this study is to examine features for classifying new malware families, the
families discovered in recent years were tried to be added to the dataset for the
purposes of familial classification. Most of the families used in the dataset (≈
82%) were detected in the last five years. This dataset called Last5Y is mainly
constructed from samples in Koodous. The MalGenome and Drebin datasets,
which are mainly used for comparative purposes in the literature, were also eval-
uated in the results. The PRAGuard dataset [21] was also aimed to be evaluated
in this study in order to assess the obfuscation resiliency of the proposed algo-
rithm. However, the samples in this dataset could not be run on the emulators
and, the authors of the dataset could not be reached on this matter.

3.1 The Method

For familial classification, features from both static and dynamic analysis were
collected. Since the studies based on static analysis in the literature perform to
a high level of accuracy, and dynamic features were observed to be similar for
malware samples belonging to the same family in this study, feature selection is
carried out both statically and dynamically. In the current study, the majority
of static features were extracted from the Manifest file, as shown in Table 2.
As pointed out in RevealDroid [16], permissions are very important for both
malware detection and familial classification. Therefore, supported permissions
by Android were used as boolean attributes. The count of custom permissions
defined by the application were also added to the static features. Other static
features are the number of activities, services and receivers given in the Manifest
file and the size of the APK file. It was also observed that some update attack
families (e.g., Shedun, Triada, etc.) define more activities, services and receivers
in the Manifest file not used in the source code. Since these components are
required for use by the downloaded code in the future, it should be defined
as such in the Manifest file. Therefore, the existence of such extra components
were also added as boolean values to the features list. To the best of the authors’
knowledge, this study is the first to employ this feature.

For obtaining dynamic features, the applications were run on the DroidBox
for a period of 15 minutes. Other than the total size of packets sent/received



through the network, all features demonstrated in Table 2 were extracted from
DroidBox’s output. The crypto activities were also collected. Here, the count
of each activity (encryption, decryption, and key generation) was separately in-
cluded in the features, which differed from the literature. All crypto algorithms
(AES, RSA, etc.) supported by Android were used as boolean attributes. In or-
der to observe data leakage, 23 sensitive tainted data (IMSI, IMEI, etc.) were
monitored by DroidBox. All of them were included in the features list. Droid-
Box also logs the way the data is leaked (e.g. through sms, file, network). The
data leakage numbers for each way was also used as features. Another feature
is the number of registered receivers added to the Dropbox by the authors. It
was observed that some applications read the /proc/meminfo, /proc/cmdline,
/proc/event directories which provide information about the system on which
the application is run. Therefore, the number of read operations from these di-
rectories were also taken as a feature. Besides these directories, the number of
read and write operations from the directory /data/data/appname, in which an
application has legal access to, was also added to the features. Finally, other
outputs from the DroidBox were included. To the best of the authors’ knowl-
edge, this study is the first to use most of these dynamic features for familial
classification. Some of these features are the number of registered receivers at
runtime, the number of each data leakage, etc. As shown in Table 2, 175 features
were collected in total.

Table 2: Features Used for Familial Classification
Feature Type Feature Explanation Type Count

Static Number of custom permissions Numeric 1
Static Existence of each permission Boolean 102
Static Number of activities Numeric 1
Static Number of services Numeric 1
Static Number of receivers Numeric 1
Static Existence of extra components Boolean 3
Static APK size Numeric 1

Dynamic Number of opened/closed network connections Numeric 2

Dynamic Number of unique network connections Numeric 2
Dynamic Total size of network packets Numeric 1

Dynamic Number of sent/received network packets Numeric 2

Dynamic Number of crypto activities Numeric 3
Dynamic Usage of crypto algorithms Boolean 13
Dynamic Existence of sensitive leaked data for each type Boolean 23
Dynamic Number of data leakage for each way Numeric 3
Dynamic Total data leakage Numeric 1
Dynamic Number of registered receivers at runtime Numeric 1
Dynamic Number of read/write operations from some directories Numeric 6
Dynamic Number of file accesses Numeric 1
Dynamic Number of file read/write operations Numeric 2
Dynamic Number of sent SMSs Numeric 1
Dynamic Number of started phone conversations Numeric 1
Dynamic Number of DexClassLoader usage Numeric 1
Dynamic Number of started services Numeric 1
Dynamic Number of crypto operations Numeric 1



In this study, techniques based on machine learning were employed for famil-
ial classification. The Weka tool [17] was utilized in order to implement classifi-
cation algorithms (J48, Random Forest, kNN) with their default parameters. A
malware family which has very few samples in training could negatively affect
the results. Therefore, families with fewer than 20 samples in both datasets were
removed and 20 fold cross-validation employed. As a result, 25 families and 3,994
samples remained in the Last5Y dataset, and 24 families and 4,476 samples in
the Drebin dataset.

3.2 Results

Results for the different classification algorithms are represented in Table 4.
kNN outperforms other algorithms. The results are detailed in Table 4, where
FP shows the weighted average of false positive rate of all families, and TP
represents the weighted average of true positive rate of all families. As can be
seen, the algorithms have high TP rates and very low FP rates for both datasets.

Table 3: Family Classification Results
Algorithm Accuracy (%) TP (%) FP (%)

Last5Y UpDroid Drebin Last5Y UpDroid Drebin Last5Y UpDroid Drebin
kNN 92.41 96.37 96.85 92.4 96.4 96.8 0.5 0.2 0.3

Random Forest 91.08 96.2 95.87 91.1 96.2 95.9 0.5 0.4 0.6
J48 89.7 96.2 95.37 89.7 96.2 95.4 0.6 0.4 0.4

The proposed family classification approach called UpDroid was compared
with Ec2 [9]. To the best of the authors’ knowledge, Ec2 [9] is the closest work to
the current study, since it is the only application using both static and dynamic
features. Ec2 shows the performance of its algorithm on the Drebin dataset with
families of more than 10 samples. It performs five fold cross-validation, and
therefore, for the purposes of fair comparison, the same settings were applied
in the current study. The comparison results are demonstrated with the same
performance metrics as Ec2 uses (MiF-micro F-score and MiAUC-micro area
under the curve) in Table 5. The results of the two common algorithms in each
study are shown. While Ec2 gives the best results with Random Forest, the cur-
rent study shows the best performance with kNN. However, overall, the current
study’s familial classification algorithm (kNN) shows better performance than
Ec2 in each metric, especially in MiAUC, the metric which is indifferent to class
imbalance. It shows also a high accuracy (95.05%) against the dataset containing
small families that have at least two samples. Please note that while Ec2 finds
the best parameters of classification algorithms by using hyper-parameter opti-
mization, the default parameters of such algorithms are employed in the current
study. Hence, no tuning is explicitly applied in order to outperform other studies.
Furthermore, while EC2 employs 190 static and 2048 dynamic features, UpDroid



uses 175 features. This indicates the selected features’ ability of distinguishing
malware that is built by analyzing recent malware.

Table 4: Comparison with Ec2 [9]
Approach Algorithm MiF MiAUC

Ec2 kNN 0.47 0.73
UpDroid kNN 0.96 0.98

Ec2 Random Forest 0.95 0.97
UpDroid Random Forest 0.94 0.99

Since most of the family classification studies use the MalGenome dataset for
evaluation, the performance of the proposed algorithm is also assessed on this
dataset. Since kNN produces the highest level of accuracy, it was elected to be
employed across all other relevant experiments of this study. For the purposes
of fair comparison, the same settings that FalDroid [15] used were applied in the
current study. All families having more than one sample is taken into account,
and 10-fold cross validation is applied. Table 6 compares the results with some
known static analysis-based classification algorithms in the literature. UpDroid
is clearly one of the best family classifiers. UpDroid is also effective on differenti-
ating families with few samples. FalDroid [15] and RevealDroid [16] are the most
recent works. While FalDroid shows comparable results with UpDroid, UpDroid
shows better performance than RevealDroid [16] considerably. DroidSieve [27]
performs slightly better on the MalGenome dataset (97.79%). Since DroidSieve
explores the use of obfuscation-invariant features for both malware detection
and family identification, it is quite effective against obfuscated malware. How-
ever, it should be noted that it uses a different experimental setting (66% split
for training) than the current study. Since the current study mainly focuses on
dynamic features for detecting obfuscated malwares, such static obfuscation-
invariant features could be considered to be added to the hybrid approach in the
future.

Table 5: Comparison with Static Analysis-Based Approaches
Approach Accuracy

DenDroid [28], 2014 94.2%
DroidSIFT [36], 2014 93.0%
Droidlegacy [14], 2014 92.9%
DroidSieve [27], 2017 97.79%
FalDroid [15], 2018 97.2%

RevealDroid [16], 2018 95.0%
UpDroid 97.32%

DroidScribe is the only familial classification work that is based on dynamic
features. Even though it improves the classification accuracy from 84% to 94% by



using Conformal Prediction, UpDroid still achieves a much better performance
(96.85%) on the same dataset, Drebin with the same setting.

False positive rates are quite low for all families. The highest false positive
rate is 0.7% for Adrd in Drebin and 0.9% for SmsReg in Last5Y. On the other
hand, except for the Boxer, SmsReg, Gappusin and LinuxLootor families, all
families show more than 90% true positive rate in Drebin. The same families also
decreased detection rates in other studies [4][9], due to being difficult to trigger,
and hence to detect. In contrast to Drebin, new malicious software seems more
sophisticated in order to evade security mechanisms. Nearly half of the families
has true positive rate under 90%. Especially the Youmi, Dowgin, and Kuguo
families decreased the overall results. As shown in the confusion matrix in Figure
3, these families are confused with each other. After analysis of these families,
many similarities among them are observed. All these families are obfuscated
aggressive advertisement malware, using the same installation strategy and the
same triggering mechanism to, steal the device information [34].

Fig. 3: Confusion Matrix for the Last5Y Dataset

4 Related Work

There are typically two datasets used for comparison in research papers : MalGenome
[37] and Drebin [4]. The MalGenome dataset was the first mobile malware
dataset introduced in 2011. It consists of 1,260 malware from 49 different mal-
ware families. Drebin [4] is a larger dataset which was introduced in 2014, and
which also contains malware from the MalGenome dataset. A dataset of obfus-
cated malware called PRAGuard dataset [21] was then released in 2015; having
collected malware from the MalGenome [37] and the Contagio [12] datasets [12],
and then applied different obfuscation techniques to them. The most recent
dataset introduced to the mobile security community is AMD [34]. It contains
24,553 samples from 71 malware families collected between 2010 and 2016. Be-
sides these datasets, some researchers also share datasets used in their studies



(e.g. [16][20]). However, to the best of the authors’ knowledge, there is no public
dataset to be found in the literature that especially focuses on update attacks.

Although there have been many studies for Android malware detection, they
generally do not perform malware family classification. The first work on auto-
mated familial classification is Droidlegacy [14]. The study classified piggybacked
applications based on the assumption that the most common code in a family
would be malicious and the Android API calls used by such malicious code are
used as the signature of a family. Although it performed with 98% accuracy on
family classification for a set of 11 families, the basic assumption lead to misclas-
sification of some applications, since they shared the code of a supporting library
(e.g. advertisement libraries) as the most common code. Other early studies on
mobile malware family classification were Dendroid [28], Droidminer [35], and
DroidSIFT [36]. Dendroid [28] proposed family classification based on statistical
analysis of an application’s code structure. While Droidminer [35] constructed
the behaviour graph of an application, DroidSIFT [36] was based on the simi-
larity of API dependency graphs of applications. A recent work also proposed
a familial classification system based on call graph similarity [15], in which, the
sensitive API call-related graph (SARG) of an application was extracted, and
which reduced the size of the function call graph of an application by approxi-
mately 72%. In order to calculate the similarity of SARG graphs, a new method
based on TF-IDF was proposed. Representative samples of each family were de-
termined based on this similarity metric, which greatly reduced the workload for
malware analysts. Although the study achieved a higher level of accuracy (95%
for Drebin dataset) compared to other approaches based on static analysis, it
was not resilient to control flow obfuscation techniques. Another recent study
based on code similarity at the methods’ level also suffered from code obfuscation
techniques [22].

Recently, two further studies were proposed in order to detect and clas-
sifiy obfuscated malwares. RevealDroid [16] takes into account features which
could help detect obfuscated malwares such as reflection-based and native-code
features. The result showed RevealDroid to be a lightweight and obfuscation-
resilient approach compared to others, namely MUDFlow [6], Drebin [4], and
Dendroid [28]. DroidSieve also explores the features for both detecting obfus-
cated and non-obfuscated malwares, and introduced a set of novel features. It
was shown that the high-ranked features of malware classification for plain and
obfuscated malwares showed a degree of similarity. For example, it was shown
that permissions and used-permissions play an important role in detecting both
plain and obfuscated malware. Another study which employed only requested
permissions in the Manifest file for family classification [23] also supported this
result.

To the best of the current study’s authors knowledge, there has only been one
study called Droidscribe [13] that is based on the dynamic features of malware for
family classification. In the study, features related to the following groups were
extracted by using CopperDroid [31]: network access, file access, binder method,
and execute file. By applying SVM multi-class classification on these features, the



proposed approach achieved 84% accuracy on the Drebin dataset [4]. Although
the results were quite low when compared to static analysis-based approaches,
they increased up to a level of 94% accuracy by Conformal Prediction (CP),
which is a computationally expensive algorithm. Therefore, it is only applied
to malware for which SVM does not meet the desired classification quality. On
the other hand, CP returns a possible list of classes to which malware belongs.
Therefore, additional analysis is needed in order to select the right class, even
after applying CP.

Even though there are some research on investigating hybrid features of mal-
ware against Windows systems [18], there has only been one hybrid study on
mobile platform, called Ec2 [9], which is a very recent addition to the liter-
ature. The most important contribution of this work was the classification of
small malware families with less than 10 samples. In order to achieve that, an
ensemble approach which combines clustering and classification techniques in a
systematic way was proposed. Ec2 showed good results both on the Drebin and
Koodous datasets. It was also shown to perform better than Droidlegacy [14]. In
the current study, an effective hybrid-based family classification algorithm using
much fewer features is proposed.

5 Conclusion

A new dataset called UpDroid is introduced in this current study. Although there
are a few existing mobile malware datasets to be found in the literature, Up-
Droid differs by only focusing on update attacks. Since updating techniques are
one of the most commonly used evasion strategies used by attackers, solutions
need to be developed against such attacks. It is believed that this dataset will
accelerate studies working on malware which cannot be effectively handled by
static analysis alone. This dataset consists of 2,479 samples belonging to 21 mal-
ware families; most of which were discovered in the last few years. The analysis
of this dataset both provides information about the update attacks and recently
introduced malware.

Since update attacks download their malicious code at runtime, detection
and familial classification based static analysis techniques are largely ineffec-
tive against such attacks. As also encountered while constructing the UpDroid
dataset in this study, these attacks cannot be correctly grouped into families
by using the anti-virus solutions available on the market. While most of the
familial classification algorithms in the literature are based on static features,
they are largely ineffective against update attacks or malware using obfuscation
techniques. As recent malware usually employs such evasion techniques [34],
an obsufcation-resilient family classification algorithm is needed. Therefore, this
study introduces a new familial classification algorithm based on both static and
dynamic features. This algorithm shows better performance than Ec2 [9], which
is the first and only other familial classification algorithm to employ hybrid fea-
tures, by using much fewer discriminating features. The introduced algorithm



achieves a high degree of accuracy and a low false positive rate on both the
recent malware and the samples in the Drebin dataset.
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