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ABSTRACT

In recent years mobile ad hoc networks (MANETS) have
become a very popular research topic. By providing com-
munication in the absence of a fixed infrastructure they are
very attractive for many applications such as tactical and
disaster recovery operations and virtual conferences. On
the other hand, this flexibility introduces new security risks.
Moreover, different characteristics of MANETSs make con-
ventional security systems ineffective and inefficient for this
new environment. Intrusion detection, which is an indis-
pensable part of a security system, presents also a particu-
lar challenge due to the dynamic nature of MANETS, the
lack of central points, and their highly constrained nodes.
In this paper, we propose to investigate the use of an ar-
tificial intelligence based learning technique to explore this
difficult design space. The grammatical evolution technique
inspired by natural evolution is explored to detect known
attacks on MANETS such as DoS attacks and route disrup-
tion attacks. Intrusion detection programs are evolved for
each attack and distributed to each node on the network.
The performance of these programs is evaluated on different
types of networks with different mobility and traffic patterns
to show their effects on intrusion detection ability.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection

; C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design— Wireless communication

; 1.2 [Artificial Intelligence]: General

General Terms

Design, Experimentation, Performance, Security
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1. INTRODUCTION

A mobile ad hoc network (MANET) is a self-configuring
network of mobile nodes connected by wireless links. These
networks have no fixed and pre-established infrastructure
such as centralized management or base stations in wire-
less networks. The union of nodes forms an arbitrary net-
work topology that changes frequently due to the mobility
of the nodes. Limited range wireless communication and
high node mobility mean that the nodes must cooperate
with each other to provide essential networking, with the
underlying network dynamically changing to ensure needs
are continually met. A routing protocol in such a network
is responsible for finding routes and providing communica-
tion between end points through cooperating intermediate
nodes. In recent years, MANETSs have become a very pop-
ular research topic. Since they provide communication even
in the absence of a fixed infrastructure, they are very attrac-
tive for many applications such as rescue operations, tactical
operations, environmental monitoring, conferences, and the
like.

MANETSs by their very nature are more vulnerable to
attacks than wired networks. The flexibility provided by
the open broadcast medium and the cooperativeness of the
mobile devices (which have generally different resource and
computational capacities, and run usually on battery power)
introduces new security risks. As part of rational risk man-
agement we must be able to identify these risks and take
appropriate action. In some cases, we may prevent these
risks cost-effectively. In other cases we may have to accept
that vulnerabilities exist and seek to take appropriate ac-
tion when we believe someone is attacking us. That’s why,
intrusion detection systems (IDSs), which monitor system
activities and detect anomalies, are usually used to comple-
ment other security mechanisms.

Many intrusion detection systems have been proposed in
the literature for wired networks but specific features of
MANET's —mobility, resource-constrained nodes, having only
local data, and limited bandwidth— make direct application
of these approaches to MANETSs impossible. Therefore, new
approaches have been developed or existing approaches have
been adapted for MANETSs. In this paper, we propose to
investigate the use of an artificial intelligence based learn-
ing technique to explore this difficult design space. The
grammatical evolution (GE) technique inspired by natural
evolution is explored to detect known attacks on MANETS
such as DoS and route disruption attacks. This is an ex-
tension of our earlier research which used GE to differen-
tiate malicious dropping from benign dropping due to mo-



bility on MANETSs. The details of applying GE to intru-
sion detection on MANETS are presented below. For each
attack type, intrusion detection programs are evolved and
distributed to each node on the network. The performance
of these programs is evaluated on simulated networks with
varying mobility and traffic patterns. Furthermore, memory
requirements of evolved programs are considered for this en-
vironment with scarce resources. The tradeoffs between the
intrusion detection ability of the programs and their memory
usage are demonstrated.

The paper is organized as follows. Section 2 presents re-
lated work in the area of intrusion detection on MANETS
and evolutionary computation applications on intrusion de-
tection. An overview of grammatical evolution is given in
Section 3. In Section 4 the attacks on MANETS are defined,
and our approach using GE to detect these attacks is given
together with experiment results. Section 5 concludes.

2. RELATED WORK

In the first proposed IDS for MANETS each node has an
IDS agent responsible for local detection, and collaborates
with neighbouring nodes for global detection [28]. Statis-
tical anomaly-based detection is chosen over misuse-based
detection in that research, since expert rules can detect only
known attacks and the rules cannot easily be updated across
a wireless ad hoc network. Another proposed anomaly-based
detection approach on MANETSs [22] is Zone-Based IDS
where the network is divided into zones based on geographic
partitioning. The nodes in a zone are grouped into intra-
zone nodes and interzone nodes which work as bridges to
the other zones. Each node in a zone is responsible for local
detection and sending alerts to interzone nodes which make
the final decisions. They also introduce MIDMEF (MANET
Intrusion Detection Format) which defines the format of in-
formation exchange between IDS agents. Another approach
which constructs an anomaly-detection model automatically
by extracting the correlations among monitored features is
proposed in [12]. Furthermore, simple rules are introduced
to determine attack types and sometimes attackers after de-
tecting an attack using cross-feature analysis.

One of the most commonly proposed intrusion detection
techniques on MANETS is specification-based intrusion de-
tection where intrusions are detected as runtime violations
of the specifications of routing protocols. This technique has
been applied to a variety of routing protocols on MANETSs
such as AODV, OLSR [24][23]. There are also a few signature-
based IDSs developed for MANETSs. One of them is pro-
posed in [25], which is based on a stateful misuse detection
technique and defines state transition programs for known
attacks on AODV. In [11], known attacks are formulated
as cases for exact/similarity matching on the packet level.
Some approaches integrate different intrusion detection tech-
niques to increase effectiveness of the system. In [25], an IDS
is proposed which uses a specification-based technique for at-
tacks that violate the specifications of AODV directly and
an anomaly-based technique for other kinds of attacks such
as DoS. Some researchers suggest using anomaly-based and
misuse-based detection system together [22][21]. In [14], a
stationary secure database is proposed to maintain the latest
attack signatures and patterns of normal user behaviours.
Since wireless nodes can overhear traffic in their communi-
cation range, promiscuous monitoring is also used to detect
some kind of attacks such as dropping and modification at-

tacks on MANETSs [13][7][16][6]. Mobile agents have been
suggested as another way to provide communication between
IDS agents [14].

Applications of evolutionary computation techniques to
intrusion detection generally use either genetic program-
ming (GP) or genetic algorithms (GA) to evolve intrusion
detection rules for wired networks [5]{10]{27][18]. Their re-
sults are promising. In [4], there is a comparison of genetic
programming techniques with some other machine learning
techniques (Support Vector Machines and Decision Trees)
for intrusion detection. The results show that genetic pro-
gramming techniques outperform other techniques and it is a
lightweight approach. Recent promising research has applied
grammatical evolution to detect attacks on wired networks
[26]. This suggests that an attempt to move a GE approach
to the highly challenging MANET setting is a highly worthy
subject if research.

3. GRAMMATICAL EVOLUTION

Evolutionary computation mimics the processes of natu-
ral evolution to find ”fit” solutions to posed problems. A
population of individuals that are candidate solutions for
the target problem is generated (usually randomly). Then,
each individual is evaluated and assigned a fitness value that
indicates how well this candidate solves or comes close to
solving the problem at hand. Until a termination criterion
is satisfied, new populations are generated iteratively by us-
ing selection, crossover, and mutation operators. Selection
picks individuals for mating based on the fitness value from
the current population. Crossover mates selected individu-
als from the current population to generate new individuals.
Mutation changes selected individuals to introduce diversity
into the population. These operators are used to provide
better solutions in the new population. The general steps in
evolutionary computation are shown below.

initialize population

while termination criterion not satisfied do
execute and evaluate fitness value of each individual
apply genetic operators (crossover, mutation, etc.) to
the individuals
create new population

end while

return best-of-run individual

Grammatical Evolution (GE) is an evolutionary computa-
tion technique evolving programs written in a BNF grammar
which allows generating computer programs in an arbitrary
language to be generated [19]. Although our approach to
search for excellent (fit) programs does indeed use a popula-
tion based evolutionary computation, approach as described
above, we could also use alternative optimisation or search
techniques. The core idea of GE relates to how simple in-
teger sequences can be interpreted as programs and this is
now described below.

BNF (Backus-Naur Form) is a formal way to describe a
language. It can be simply described as a set of rules. A
BNF system is described a quadruple:T, N, P, S. T is a
set of terminal symbols, which are concrete terms in the
grammar. N is a set of non-terminal symbols, which are
place-holders used in the generation of terminals by using
the set of production rules P. P provides mapping from non-



terminal symbols to terminal or non-terminal symbols. S is
the start symbol where mapping starts. A BNF grammar
for the symbolic regression problem [17] is given in Table 1.
The symbols enclosed by brackets (<>) are non-terminals,
others are terminals. The productions of a rule assigned by

::=’ are separated with ’|’.

Table 1: BNNF grammar for symbolic regression

S = <expr>

<expr> = <expr><op><expr> | (<expr><op><expr>) |
<pre-op>(<expr>) | <var>

<op>u=+|-|/|*

<pre-op>::=sin | cos | exp | log

<var> = X | 1.0

In GE genomes are represented by variable-length binary
strings. A group of 8 bits in a genome produces a codon
value, which is used to choose a rule from a BNF grammar.
Assume that the genome of an individual, which is mapped
from a binary string to an integer string, is:

|220|35|47|68|137|55|144|22|46|178|

Left-most non-terminal expansion is used at any stage.
The first codon value is used to choose the production rule
from the start rule S. Since S has one production expr, 220
is used to choose one of the productions of expr according
to the formula below:

Rule = (codon val.)MOD(# of productions of the non—termin(al))

1
expr has 4 productions, so 220 MOD 4=0 is calculated and
the production ”"<expr><op><expr>" is selected accord-
ingly (production options are numbered starting from 0).
Then, next codon value 35 is used to choose from expr
rule, since it is the first non-terminal at this point. So,
third (35 MOD 4=3) production of the expr, "<var>”, is se-
lected. The individual becomes "<var><op><expr>", the
next codon value 47 is used to choose the (47 MOD 2=1)
production of "<var>" rule to give ”1.0<op><expr>". The
process continues until there are no mapped non-terminal
symbols. If there are still non-terminal symbols to be ex-
panded and all integers in a string are used, the interpre-
tation simply returns to the beginning of the genome again
and starts re-reading the string. This process is called wrap-
ping. However, there is a threshold value for such wrapping.
If this value is exceeded and there are still unmapped non-
terminals, this individual is assumed invalid and assigned
the lowest fitness value.

4. GRAMMATICAL EVOLUTION IN INTRU-

SION DETECTION ON MANETS
4.1 Attacks

In this paper, we use grammatical evolution to evolve in-
trusion detection programs for known attacks against rout-
ing protocols on MANETs. AODV [9], which is one of
the most commonly used on-demand routing protocols on
MANETS, is used as an exemplar routing protocol. The
attacks on AODV considered in this paper are explained
below.

4.1.1 Dropping Attack

In the dropping attack scenario malicious nodes drop data
packets not destined for themselves for a given time interval
to disrupt the network connection. Since malicious nodes
need to be on a routing path to drop data packets, they
have little reason to drop routing protocol control packets
such as RREQ, RREP, and RERR messages used in route
discovery and maintenance mechanisms of AODV. So, it is
assumed that malicious nodes do not drop routing proto-
col control packets. Dropping data packets reduces network
performance by causing the retransmission of the packets,
the discovery of new routes to the destination, and the like.
Furthermore, they can prevent the end-to-end communica-
tions between nodes if the dropping node is at a critical
point. In the simulation, malicious nodes drop each packet
they receive in 3 second intervals.

While packet losses usually occur due to congestion in
wired networks, there can be other causes on MANETS such
as wireless link transmission errors and mobility [15]. Mo-
bility is given as the major cause of packet losses (60%) on
AODV [15]. So, we mainly aim to differentiate packet drop-
ping due to malicious behaviour from packet dropping due
to mobility.

4.1.2  Route Request Flooding Attack

Network topology changes frequently on MANETS due to
mobility. Moreover link breakages are very common in wire-
less networks. These may result in making existing routes
inactive and discovering new routes by route request pack-
ets. Route request messages are sent when nodes need a
new route on reactive routing protocols such as AODV. Ev-
idently, mobility may increase the number of route request
packets on the network. In the flooding attack scenario, the
attacker exploits this property of the route discovery mech-
anism by broadcasting a lot of route request messages for
randomly selected nodes. The attacker aims to consume the
resources of the nodes and the network. In the simulation,
the attacker broadcasts 20 route request packets in a row as
in [9].

4.1.3 Route Disruption Attack

In this attack scenario, the attacker sends route reply mes-
sages to the victim node without receiving any route request
messages from that node. Instead of sending route replies
for random destination nodes, the attacker chooses one of
its neighbours as a victim and sends route reply messages
(with higher destination sequence number) to this node for
disrupting the active routes in its routing table. Since the
attacker is the victim node’s neighbour, he already knows
about the active routes of the victim through the routing
control packets broadcasted by him. As it is stated in [22],
one or few routing control packets could hardly incur severe
damage to the system. So, in the simulation the attacker
sends 5-10 route reply packets to the victim in one second.
This attack has been extended to 3 and 5 seconds in further
simulations where the attacker achieves his goal slowly and
makes the detection of his malicious behaviour difficult.

Separate programs are evolved by GE to detect each at-
tack against MANET explained above and the evolved pro-
grams are distributed to each node on the network. At-
tacks are detected by the nodes that the attacks affect di-
rectly. In dropping attacks, the monitor nodes are those
who send/forward packets to the next node. These mon-



itor nodes listen promiscuously to determine whether the
next node forwards the packets and try to differentiate the
malicious dropping from benign dropping. However, promis-
cuous monitoring fails in ambiguous collisions and receiver
collisions [16]. In our previous research, we use TCP ac-
knowledgements instead of promiscuous monitoring to in-
dicate dropping on the network [20]. In flooding attacks,
the nodes who are flooded by route request messages detect
the attack. In route disruption attacks, the victim node is
assumed to detect malicious change in its routing table.

4.2 Grammatical Evolution

In GE, a problem is defined with the grammar and the
fitness function. The grammar used to evolve programs to
detect the attacks on MANETSs and raise an alarm is defined
in Table 2. libge [2] library is used for the evolution process.

Table 2: BNF grammar used for the problem

S = <code>

<code> ::= if(<cond>) {raise_alarm()}

<cond> ::= <cond><set-op><cond> | <expr><relop><expr>

<expr> = <expr><op><expr> | (<expr> <op><expr>) |
<pre-op>(<expr>) | <pre-op2>(<expr>) | <var>

<op>u=+4|-|/|*

<pre-op>::=sin | cos | log | In | sqrt | abs | exp | ceil | floor

<pre-op2>::= max | min | pow | percent

<rel-op>u=< | <|>|>|==|1=

<set-op> ::= and | or

<var> ::= feature set in Appendix A

Features used in the grammar are given in Appendix A.
We use both mobility-related features as well as packet-
related features as input to the evolution system. While
some of these features give information about mobility di-
rectly (such as changes in the number of neighbours), some
of them can be the result of mobility (such as routes added
in the last period). Packet-related features include rout-
ing protocol control packets and transport protocol packets.
Some features are used only for particular attacks such as
data packets not forwarded by the next node for dropping
attacks, and the average hop count feature for route disrup-
tion attacks. All features are gathered every time interval
by each node.

GE parameters The parameters used in GE are given
in Table 3.

Table 3: GE Tableau for detecting known attacks on
MANETSs

Objective: Find a computer program to detect flood-
ing, route disruption and dropping at-
tacks on MANETSs

Non-Terminal Opera- The binary operators +,-,*, /, pow, min,

tors: max, percent
The unary operators sin, cos, log, In, sqrt,
abs, exp

Terminal Operators:
Fitness cases:

The feature set in Appendix A

The given sample of network data marked
malicious or non-malicious

The detection rate over the fitness cases
subtract the false positive rate over the
fitness cases

Same as raw fitness

Populations Size = 100

Termination when Generations= 2000
Prob. Mutation = 0.01

Prob. Crossover = 0.9

Steady State

Raw Fitness:

Standardised Fitness:
Parameters

The fitness function is one of the most important pa-
rameters in evolutionary computation, since it evaluates how
good the solution is. In our experiment, we use a fitness
function based on the detection rate and the false positives
rate to evaluate effectiveness of a proposed system.

The detection rate shows the ratio of correctly detected
intrusions to the total intrusions on the network. The false
positive rate shows the ratio of normal activities that are in-
correctly marked as intrusions to the total normal activities
on the network. A low false positive rate is as important as
high detection rate for a good intrusion detection system.

. _ correctly detected attacks
detection = total attacks (2)
_ normal activities incorrectly detected as attacks
fa’lse pos. = total normal activities (3)
Fitness = detection — false positive (4)

4.3 Experimental Results

The evolved programs are evaluated on the networks sim-
ulated by ns-2 [3]. Mobility of the nodes is simulated by the
Random Waypoint model which is created using BonnMo-
tion [1]. In the Random Waypoint model, each node moves
from its current location to a random new location with ran-
dom speed and pause time in determined speed/pause time
limits [8]. Different network scenarios are created with dif-
ferent mobility levels and traffic loads. 50 nodes are placed
in a topology of 1000m by 500m. Both TCP and UDP/CBR
traffic are used for communication. The maximum of con-
nections is set to either 20 or 30 to simulate different traffic
loads. The maximum speed of nodes is set to 20 m/sec and
the pause time between movements is set to 40, 20, and 5
sec to simulate low, medium, and high mobility respectively.
AODV is chose as a routing protocol and AODV periodic
hello messages are used for local link connectivity. The sim-
ulations run 5000 seconds for training and 2000 seconds for
testing.

The algorithm is evolved using the training data collected
from a network under medium mobility with 30 TCP connec-
tions. The same network with attacks and without attacks
is used together for training to reduce false positives. The
best result of ten runs is chosen for each attack type and
evaluated on different network scenarios. Table 4 shows the
performance of the evolved program for each attack on the
network under medium mobility with 30 TCP connections.
The false positive rates on the same network under no attack
and on the stable network under no attack are also given in
this table.

The results show that the evolved program for dropping
attack has a high false positive rate. False positives which
occur in 5 seconds by the same node after raising an alarm
are ignored, since the effect of the dropping might continue.
As we mentioned before, packet losses occur frequently on
MANETS due to congestions, wireless link transmission er-
rors, and mobility. So, the features beyond the routing pro-
tocol are also needed to detect malicious dropping effectively.
The system can be improved by adding these features to the
evolution. The false positive rate of the detection program
for the flooding attack on the stable network is higher than
the mobile network. Since the programs are evolved under
medium mobility, this is quite expected. It is seen that the
false positive rate of the detection program for route dis-
ruption attack on the network under attack is slightly more
than the network without any attacks. The effect of this
attack might take longer on the network.



Table 4: the experimental results

Attacks Detection False Positive False Positive | False Positive
without attack | without attack
no mobility

Dropping Attack | 100% 8.46% 8.81% 10.30%

Flooding Attack [ 99.86% 2.00% 2.19% 5.11%

Route Disruption | 100% 0.83% 0.81% 0.59%

For each attack, the performance of the evolved programs i — >
is tested on the network under different mobility and traffic | o
levels. The results for each attack are given in Table 5. The 1400000 s -
results demonstrate that grammatical evolution approach i e e
shows a good performance on intrusion detection in mobile &, 1030000, T Sl —
ad hoc networks. The detection rate is high for both the rE . s PR
flooding attack and the route disruption attack, since the e
results of these attacks are quite evident on the network. 450000 4
However they are not easily differentiated from normal net- bidied \'m"ﬂ"‘ b
work operations under high mobility and high traffic. S
— % — Nomal T20 —&—Nonmal T30 & - -Floodug Attack T30

Table 5: the results under varying mobility and traf-
fic levels

Network Flooding Attack | Route Disruption
Scenarios Attack

DR FPR DR FPR
low mobility
low traffic 99.81% 0.29% 100% 0.41%
low mobility
medium traffic 98.54% 1.72% 100% 0.88%
medium mobility
low traffic 99.86% 0.36% 100% 0.4%
medium mobility
medium traffic 99.86% 2.00% 100% 0.83%
high mobility
low traffic 99.96% 0.66% 100% 0.44%
high mobility
medium traffic 98.66% 1.73% 100% 0.76%

The false positive rate changes due to the mobility and the
traffic load. Other factors such as network topology, traffic
and mobility patterns also affect the results. For instance,
we expect that the number of route request packets is much
higher in high mobility networks, since mobility can make
existing routes inactive frequently. In Figure 1 the num-
bers of route request packets on a normal network and on
a network under flooding attack are presented. It shows lit-
tle difference in the numbers of route request packets among
the networks with different mobility levels. The network un-
der low/medium mobility may also broadcast a lot of route
request packets due to its topology, its mobility and traffic
patterns to build and preserve its active routes.

The route disruption attack is also implemented in 1, 3, 5
seconds on the same networks and trained separately by col-
lecting data each 1, 3, 5 seconds respectively. The results for
the best individuals (with the highest detection rate, 100%)
are presented in Figure 2. It is clear that the false posi-
tive rate is increased proportional to the attack distribution
time. The best individual with the highest detection rate
is chosen here to compare attack patterns with each other
easily. There are also individuals who have lower false posi-
tive rate but also a lower detection rate among the evolved
programs. It is a trade-off between detection rate and false
positive rate to decide the best individual.

For each attack type, the evolved programs and the mem-
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Figure 1: Route Request Packets on the networks
under different mobility levels
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Figure 2: Performance of the evolved programs for
route disruption attack

ory usage of each program (detect an attack and call the
response function) are given below. Memory usage of each
program is calculated according to the formula below:

mem = program binary size + variables *x sizeof(float) (5)

Program size of the evolved programs is also analyzed,
since mobile nodes can have scarce resources. Efficiency is
as important as effectiveness on intrusion detection in such a
resource-constrained network. In Figure 3, the best individ-
uals of each run are given with their program size, detection
rate, and false positive rate on the training data. Program
size is calculated by adding the number of terminals and the
number of functions in the program. It is seen that there are
programs that have similar accuracy but different program
size. There is a trade-off between resources consumed by
programs and detection efficacy.

Lastly the relation between accuracy of evolved programs
for flooding and route disruption attacks and number of gen-
erations is shown in the figure below.



Table 6: programs (best individuals) evolved by GE
for each attack

Attack Evolved Program Memory
Type Usage
Flooding sent_rrepPs + exp(frw_aodvPs - | ~7.52kB
updatedroutes * pow(frw_rreqPs,
added_repairedroutes)) > no_neighbours
Route log(exp(invroutes_other)) + recv_aodvPs | ~7.79kB
Disruption| - percent(exp(init_aodvPs), sent_rreqPs)
+ repairedroutes > recvB_rerrPs

best individuals for detection of flooding attack
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Figure 3: Best individuals of each run versus IDS
objectives

S.  CONCLUSIONS AND FUTURE WORK

MANETS are a highly promising new form of networking.
However, they are more vulnerable to attacks than wired
networks. Furthermore, existing intrusion detection systems
are not applicable to this highly dynamic environment. We
propose to use a promising technique from artificial intelli-
gence to synthesise the most appropriate intrusion detec-
tion programs for this challenging network type. Gram-
matical evolution essentially "grows” intrusion detection pro-
grams by evaluating populations of potential programs and
subjecting them to a variety of genetically inspired opera-
tors. Our grammatical evolution technique shows good per-
formance on evolving efficient detectors for known attacks
against routing protocol on MANET'S such as flooding, and
route disruption attacks. The work presented here is an
extension of our earlier research which aims to distinguish
malign and benign packet dropping using the same tech-
nique. An evolved program’s effectiveness is evaluated under
some variations applied to the attack patterns, the mobil-
ity and traffic levels of the network. The program size of
best individuals is also presented and compared with their
effectiveness.

We consider only detection rate and false positive rate in
our experiments to evaluate our programs. However, other
non-functional properties of the programs such as program

programs for detection of Mooding ateack
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Figure 4: Relation between classification accuracy
and number of generations

size, power consumption should be taken into account for
MANETSs where the nodes might well be highly resource-
constrained. Although we have not done so here, evolution-
ary techniques have ability to handle messy multi criteria
tradeoffs, such as those we have to deal with. In the fu-
ture, we are planning to explore optimal trade-offs between
these objectives of intrusion detection on MANETS: detec-
tion and false positive rate, resources used by programs (e.g.
memory, power). We believe that artificial intelligence based
approaches to program synthesis such as grammatical evo-
lution are of significant potential benefit for the evolution of
IDS programs for challenging environments and we encour-
age the research community to explore their use.
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APPENDIX

A. THE FEATURES

Features

Explanation

neighbours
added_neighbours
removed _neighbours
active_routes
repaired_routes
invalidated_routes
addedroutes_disc
addedroutes_notice
updated_routes
added repairedroutes
invroutes_timeout
invroutes_other
avg_hopcount
recv_rreqPs
recvF_rreqPs
send_rreqPs
frw_rreqPs
recv_rrepPs
recvF_rrepPs
send_rrepPs
frw_rrepPs
recvB_rerrPs
send_rerrPs
recv_aodvPs
recvF_aodvPs
send_aodvPs
frw_aodvPs
dropped_dataPs

no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.

of neighbours

of added neighbours

of removed neighbours

of active routes

of routes under repair

of invalidated routes

of added routes by route discovery mechanism
of added routes by overhearing

of updated routes (modifying hop count, sequence number)
of added routes under repair

of invalidated routes due to expiry

of invalidated routes due to other reasons

average no. of hop counts of active routes

no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.
no.

of received route request packets destined to this node

of received route request packets to be forwarded by this node
of broadcasted route request packets from this node

of forwarded route request packets from this node

of received route reply packets destined to this node

of received route reply packets to be forwarded by this node
of initiated route reply packets from this node

of forwarded route reply packets from this node

of received broadcast route error packets (to be forwarded or not)
of broadcasted route error packets from this node

of received total routing protocol packets

of received total routing protocol packets to be forwarded

of initiated total routing protocol packets from this node

of forwarded total routing protocol packets by this node

of data packets not forwarded by the next node




