
BİL 471 –

Veritabanı Sistemleri

Introduction

Ders hakkında

 Web sayfası:
http://web.cs.hacettepe.edu.tr/~ssen/teaching/bbm471.html

 Sunumları, bu sayfadan edinebilirsiniz.

 Bu dersten sonra hemen haber grubuna üye
olacağım!

http://web.cs.hacettepe.edu.tr/~ssen/teaching/bbm471.html

3

Textbook

 Textbook:
 Database System Concepts, by Abraham

Silberschatz, Henry F. Korth, and S.
Sudarshan, McGraw Hill

 Türkçe Kaynaklar
 Ünal Yarımağan “Veritabanı Sistemleri”,

Akademi Yayıncılık, 2. basım, 2010
 Other references:

 Database Management Systems, by Raghu
Ramakrishnan and Johannes Gehrke, McGraw-
Hill

 Database Systems: The Complete Book (2nd
edition), by Hector Garcia-Molina, Jeffrey D.
Ullman, and Jennifer D. Widom

 Fundamentals of Database Systems, by Ramez
Elmasri and Shamkant Navathe, Addison Wesley

SQL Readings

 Many SQL references available online

 Good online (free) SQL tutorials include:

 A Gentle Introduction to SQL (http://sqlzoo.net/)

 SQL for Web Nerds
(http://philip.greenspun.com/sql/)

http://sqlzoo.net/
http://philip.greenspun.com/sql/

Tentative Grading

 Değerlendirme

 Arasınav : %30 - Kapalı Kitap / Kapalı Notlar

 Proje : %30

 Genel Sınav : %40 - Kapalı Kitap / Kapalı Notlar

Course Overview

Introduction Relational Database Design

Normalization

Transactions

Concurrency

E-R Models Other Topics

Relational Model -NoSQL DB

Relational Algebra -Object-oriented DB

SQL

Midterm exam

Lecture 1: Introduction

What is a Database?

 A database is a large, integrated collection of
data, typically describing the activities of one
or more related organizations.

 For example, a university database might
contain information about the following:
 Entities (Varlıklar)

 students, faculty, courses, and classrooms.

 Relationships between entities (Bağıntılar)
 students' enrollment in courses, faculty teaching courses,

and the use of rooms for courses.

A Sample Relational Database

Your wallet is full of DB records…

 Identity Card

 Driver’s license

 Credit cards

 University Card

 Medical insurance card

 Social security card

 Money (serial numbers)

 Photos (ids on back)

 Etc…

“You may not be interested in

databases, but databases are

interested in you.” - Trotsky

Slide from M.P. Johnson NYU

What is a database management system (DBMS)?

Definition 1

A database management system, or DBMS, is
software designed to assist in maintaining and
utilizing large collections of data

Definition 2:

System for providing efficient, convenient, and safe
multi-user storage of and access to massive amounts
of persistent data

DBMS Examples

 Most familiar use: many Web sites rely heavily

on DBMS's

 And many non-Web examples

Slide from K.Minami

Frequently Used Sites With DBMS

Frequently Used Sites With DBMS

Frequently Used Sites With DBMS

Frequently Used Sites With DBMS

What is a database management system

(DBMS)?

Definition 2:

System for providing efficient, convenient, and

safe multi-user storage of and access to massive

amounts of persistent data

Red words = key characteristics

Slide from K.Minami

Example: Banking system

 Data = information on accounts, customers,
balances, current interest rates, transaction histories,
etc.

 Massive: many gigabytes at a minimum for big
banks, more if keep history of all transactions, even
more if keep images of checks -> Far too big for
memory

 Persistent: data outlives programs that operate on it

Slide from K.Minami

Two Perspectives in DB Systems

 User perspective: externals
 how to use a database system?

 conceptual data modeling, relational and other data
models, database schema design, relational algebra, and
the SQL query language.

 System perspective: internals
 how to design and implement a database system?

 data representation, indexing, query optimization and
processing, transaction processing, concurrency control,
and crash recovery

Slide from K.Minami

Example of a Traditional DB App

 Suppose we build a system

 We store:

 checking accounts

 savings accounts

 account holders

 state of each person’s accounts

Slide from M.P. Johnson NYU

Can we do without a DBMS?

Sure! Start by storing the data in files:

checking.txt savings.txt customers.txt

Now write C or Java programs to implement
specific tasks…

Slide from M.P. Johnson NYU

Doing it without a DBMS...

 Transfer $100 from George’s savings to

checking:

Read savings.txt

Find&update the line w/“George”
balance -= 100

Write savings.txt

Read checking.txt

Find&update the line w/“George”
balance += 100

Write checking.txt

Write a C program to do the following:

Slide from M.P. Johnson NYU

Problems without an DBMS...

1. System crashes:

 Same problem even if reordered

2. Simultaneous access by many users
 George and Dick visit ATMs at same time

Read savings.txt

Find&update the line w/ “George.”

Write savings.txt

Read checking.txt

Find&update the line w/ “George”

Write checking.txt

CRASH!

Slide from M.P. Johnson NYU

Why is multi-user access hard?

Multi-user: many people/programs accessing same db, or
even same data, simultaneously -> need careful controls

Alice @ ATM1: withdraw $100 from account #002
get balance from database;
if balance >= 100 then balance := balance - 100;
dispense cash;
put new balance into database;

Bob @ ATM2: withdraw $50 from account #002
get balance from database;
if balance >= 50 then balance := balance - 50;
dispense cash;
put new balance into database;

Initial balance = 200. Final balance = ??

Slide from K.Minami

Problems without a DBMS...

3. Large data sets (100s of GBs, or TBs, …)

 No indices

 Finding “George” in huge flatfile is expensive

4. Modifications intractable without better data
structures

 “George”  “Georgie” is very expensive

 Deletions are very expensive

Slide from M.P. Johnson NYU

Problems without an DBMS...

5. Security?
 File system may lack security features

6. Application programming interface (API)?
 Interfaces, interoperability

7. How to query the data?
 need to write a new C++/Java program for every new

query

 need to worry about performance

Slide adapted from M.P. Johnson NYU

Drawbacks of using file systems to store data:

 Data redundancy and inconsistency
Multiple file formats, duplication of information in
different files

 Difficulty in accessing data
Need to write a new program to carry out each new
task

 Data isolation — multiple files and formats
 Integrity problems

Integrity constraints (e.g. account balance > 0)
become part of program code
Hard to add new constraints or change existing ones

Using File systems 1/2

 Atomicity of updates
Failures may leave database in an inconsistent state with
partial updates carried out

E.g. transfer of funds from one account to another
should either complete or not happen at all

 Concurrent access by multiple users
Concurrent accessed needed for performance
Uncontrolled concurrent accesses can lead to
inconsistencies

E.g. two people reading a balance and updating it at
the same time

 Security problems

Using File systems 2/2

DBMSs were invented to solve all

these problems!

Why use a DBMS?

 Data independence and efficient access

 Reduced application and development time

 Data integrity and security

 Uniform data administration

 Concurrent access, recovery from crashes

Back to the red words

 Safe:
 from system failures
 from malicious users

 Convenient:
 simple commands to debit account, get balance, write

statement, transfer funds, etc.
 also unexpected queries should be easy

 Efficient:
 don't scan the entire file to get balance of one account,

get all accounts with low balances, get large transactions,
etc.

 massive data! -> DBMS's carefully tuned for performance

Slide from K.Minami

Schemas and Data

 Similar to types and variables in programming languages

 Schema – the logical structure of the database
 schema: describes how data is to be structured, defined at set-up time, rarely

changes

 Physical schema: database design at the physical level

 Logical schema: database design at the logical level

 Instance – the actual content of the database at a particular point in
time
 data is actual "instance" of database, changes rapidly

 Physical Data Independence – the ability to modify the physical
schema without changing the logical schema

 Applications depend on the logical schema

 In general, the interfaces between the various levels and components
should be well defined so that changes in some parts do not seriously
influence others

Level of Abstractions in a DBMS

 Many views, single conceptual and physical
schema.

Schemas

 Physical Schema

 Describe the files and indexes used

 Conceptual Schema

 Define logical structure

 External Schema (views)

 Describes how user sees the data

Slide from M.P. Johnson NYU

Schema e.g.: college registrar

 Schema:
 Students(ssn: string, name: string, login: string, age: int,

gpa: real)
 Courses(cid: string, cname: string, credits: int)
 Enrolled(ssn:string, cid:string, grade: string)

 Physical schema:
 Relations stored as unordered text files.
 Indices on first column of each rel

 Views:
 My_courses(cname: string, grade: string, credits: int)
 Course_info(ssn: string, name: string, status: string)

Slide from M.P. Johnson NYU

Data Models
 A collection of tools for describing

 Data
 Data relationships
 Data semantics
 Data constraints

 Relational model

 Entity-Relationship data model (mainly for database
design)

 Object-based data models (Object-oriented and Object-
relational)

 Semistructured data model (XML)

 Other older models:
 Network model
 Hierarchical model

Entity-Relationship Model

A sample E-R diagram

Relational Model

Database Queries

1. What is the name of the student with student id 123456?

2. What is the average salary of professors who teach the course
with cid CS564?

3. How many students are enrolled in course CS564?

4. What fraction of students in course CS564 received a grade
better than B?

5. Is any student with a GPA less than 3.0 enrolled in course
CS564?

DDL and DML

 Data definition language (DDL)

 commands for setting up schema of database

 Data Manipulation Language (DML)

 Commands to manipulate data in database:

 SELECT, INSERT, DELETE, MODIFY

Also called "query language"

How the programmer sees the DBMS

 Start with SQL DDL to create tables:

 Continue with SQL to populate tables:

CREATE TABLE Students (

Name CHAR(30)

SSN CHAR(9) PRIMARY KEY NOT NULL,

Category CHAR(20)

);

INSERT INTO Students

VALUES('Hillary', '123456789', 'undergraduate');

Slide from M.P. Johnson NYU

How the programmer sees the DBMS

SSN Name Category

123-45-6789 Hillary undergrad

234-56-7890 Barak grad

 … …

Students:

CID CName

C20.0046 Databases

C20.0056 Advanced Software

Courses:

SSN CID semester

123-45-6789 C20.0046 Spring,
2004

123-45-6789 C20.0056 Spring,
2004

234-56-7890 C20.0046 Fall, 2003

 …

Takes:

Slide from M.P. Johnson NYU

Querying: Structured Query Language

 Find all the students who have taken Bil354

 Find all the students who took Bil354 previously:

 Find the students’ names:

SELECT SSN FROM Takes

WHERE CID=‘Bil354';

SELECT SSN FROM Takes

WHERE CID=' Bil354 ' AND

Semester='Fall, 2009';

SELECT Name FROM Students, Takes

WHERE Students.SSN=Takes.SSN AND

CID=' Bil354 ' AND Semester='Fall, 2009';

Slide from M.P. Johnson NYU

CS411 44

People

 DBMS administrator (DBA)

 Design of the conceptual and physical schemas

 Security and authorization

 Data availability and recovery from failures

 Database tuning

 DBMS application programmers

 DBMS end-user: queries/modifies data

Slide from M.P. Johnson NYU

Database Industry

 Commercial DBMSs: Oracle, IBM’s DB2, Microsoft’s
SQL Server, etc.

 Opensource: MySQL, PostgreSQL, etc.

 DBAs manage these

 Programmers write apps

 XML (“semi-structured data”) also important

First Part of the Course: DBMS externals

 Entity-Relationship Model

 Relational Model

 Relational Database Design

 Relational Algebra

 SQL and DBMS Functionality:

 SQL Programming

 Queries and Updates

 Indexes and Views

 Constraints and Triggers

Second Part of the Course: DBMS internals

 Query Execution and Optimization

 Transaction Management

 Concurrency

